用于可重构CAM和IMC应用的可靠多状态RRAM器件

IF 2.4 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengpeng Xing;Zijian Wang;Zhen Wang;Pengtao Li;Xuemeng Fan;Ziyang Zhang;Guobin Zhang;Jianhao Kan;Qi Luo;Shuai Zhong;Yishu Zhang
{"title":"用于可重构CAM和IMC应用的可靠多状态RRAM器件","authors":"Shengpeng Xing;Zijian Wang;Zhen Wang;Pengtao Li;Xuemeng Fan;Ziyang Zhang;Guobin Zhang;Jianhao Kan;Qi Luo;Shuai Zhong;Yishu Zhang","doi":"10.1109/JEDS.2025.3562399","DOIUrl":null,"url":null,"abstract":"This work presents a reliable multistate RRAM device based on a Cu/Ta2O5/WO<inline-formula> <tex-math>${}_{\\text {3-x}}$ </tex-math></inline-formula>/Pt structure, utilizing fully CMOS-compatible materials. The device demonstrates four distinct resistive states under varying switching voltages, achieving a swift response time of 25 ns and an on/off ratio exceeding <inline-formula> <tex-math>$10{^{{4}}}$ </tex-math></inline-formula>. Additionally, it demonstrates a robust data retention time exceeding <inline-formula> <tex-math>$10^{6}$ </tex-math></inline-formula> seconds and endures more than <inline-formula> <tex-math>$10^{4}$ </tex-math></inline-formula> pulses in endurance tests. Statistical analysis conducted over 100 cycles across ten devices reveals consistent resistance characteristics, with variations maintained below 10%. Leveraging these advantages, the RRAM devices were integrated with MOS transistors to construct a 4T2R unit-based array, enabling reconfigurable applications such as analog voltage-based content-addressable memory (CAM) and in-memory computing (IMC) accelerators. Notably, the proposed solution reduces energy consumption by over 20% in CAM applications and significantly enhances energy efficiency for fingerprint recognition tasks through convolution operations, achieving more than three times the energy efficiency compared to conventional GPU and CPU systems while maintaining an accuracy of 98%.","PeriodicalId":13210,"journal":{"name":"IEEE Journal of the Electron Devices Society","volume":"13 ","pages":"383-389"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969850","citationCount":"0","resultStr":"{\"title\":\"Reliable Multistate RRAM Devices for Reconfigurable CAM and IMC Applications\",\"authors\":\"Shengpeng Xing;Zijian Wang;Zhen Wang;Pengtao Li;Xuemeng Fan;Ziyang Zhang;Guobin Zhang;Jianhao Kan;Qi Luo;Shuai Zhong;Yishu Zhang\",\"doi\":\"10.1109/JEDS.2025.3562399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a reliable multistate RRAM device based on a Cu/Ta2O5/WO<inline-formula> <tex-math>${}_{\\\\text {3-x}}$ </tex-math></inline-formula>/Pt structure, utilizing fully CMOS-compatible materials. The device demonstrates four distinct resistive states under varying switching voltages, achieving a swift response time of 25 ns and an on/off ratio exceeding <inline-formula> <tex-math>$10{^{{4}}}$ </tex-math></inline-formula>. Additionally, it demonstrates a robust data retention time exceeding <inline-formula> <tex-math>$10^{6}$ </tex-math></inline-formula> seconds and endures more than <inline-formula> <tex-math>$10^{4}$ </tex-math></inline-formula> pulses in endurance tests. Statistical analysis conducted over 100 cycles across ten devices reveals consistent resistance characteristics, with variations maintained below 10%. Leveraging these advantages, the RRAM devices were integrated with MOS transistors to construct a 4T2R unit-based array, enabling reconfigurable applications such as analog voltage-based content-addressable memory (CAM) and in-memory computing (IMC) accelerators. Notably, the proposed solution reduces energy consumption by over 20% in CAM applications and significantly enhances energy efficiency for fingerprint recognition tasks through convolution operations, achieving more than three times the energy efficiency compared to conventional GPU and CPU systems while maintaining an accuracy of 98%.\",\"PeriodicalId\":13210,\"journal\":{\"name\":\"IEEE Journal of the Electron Devices Society\",\"volume\":\"13 \",\"pages\":\"383-389\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10969850\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of the Electron Devices Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969850/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of the Electron Devices Society","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10969850/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于Cu/Ta2O5/WO ${}_{\text {3-x}}$ /Pt结构的可靠的多态RRAM器件,利用完全兼容cmos的材料。该器件在不同的开关电压下表现出四种不同的电阻状态,实现了25 ns的快速响应时间和超过$10{^{{4}}}$的开/关比。此外,它还展示了超过10^{4}$秒的稳健数据保留时间,并在耐久性测试中承受了超过10^{4}$的脉冲。在10个设备上进行了超过100次循环的统计分析,显示出一致的电阻特性,变化保持在10%以下。利用这些优势,RRAM器件与MOS晶体管集成,构建基于4T2R单元的阵列,实现可重构应用,如模拟基于电压的内容可寻址存储器(CAM)和内存计算(IMC)加速器。值得注意的是,该解决方案在CAM应用中降低了20%以上的能耗,并通过卷积操作显着提高了指纹识别任务的能效,与传统GPU和CPU系统相比,实现了三倍以上的能效,同时保持了98%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reliable Multistate RRAM Devices for Reconfigurable CAM and IMC Applications
This work presents a reliable multistate RRAM device based on a Cu/Ta2O5/WO ${}_{\text {3-x}}$ /Pt structure, utilizing fully CMOS-compatible materials. The device demonstrates four distinct resistive states under varying switching voltages, achieving a swift response time of 25 ns and an on/off ratio exceeding $10{^{{4}}}$ . Additionally, it demonstrates a robust data retention time exceeding $10^{6}$ seconds and endures more than $10^{4}$ pulses in endurance tests. Statistical analysis conducted over 100 cycles across ten devices reveals consistent resistance characteristics, with variations maintained below 10%. Leveraging these advantages, the RRAM devices were integrated with MOS transistors to construct a 4T2R unit-based array, enabling reconfigurable applications such as analog voltage-based content-addressable memory (CAM) and in-memory computing (IMC) accelerators. Notably, the proposed solution reduces energy consumption by over 20% in CAM applications and significantly enhances energy efficiency for fingerprint recognition tasks through convolution operations, achieving more than three times the energy efficiency compared to conventional GPU and CPU systems while maintaining an accuracy of 98%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of the Electron Devices Society
IEEE Journal of the Electron Devices Society Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
5.20
自引率
4.30%
发文量
124
审稿时长
9 weeks
期刊介绍: The IEEE Journal of the Electron Devices Society (J-EDS) is an open-access, fully electronic scientific journal publishing papers ranging from fundamental to applied research that are scientifically rigorous and relevant to electron devices. The J-EDS publishes original and significant contributions relating to the theory, modelling, design, performance, and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanodevices, optoelectronics, photovoltaics, power IC''s, and micro-sensors. Tutorial and review papers on these subjects are, also, published. And, occasionally special issues with a collection of papers on particular areas in more depth and breadth are, also, published. J-EDS publishes all papers that are judged to be technically valid and original.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信