RA-UNet:一种新的深度学习分割方法,用于细粒度扫描电镜(SEM)图像的半导体晶圆缺陷分析

IF 2.3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yibo Qiao;Yanning Chen;Fang Liu;Zhouzhouzhou Mei;Yuening Luo;Yining Chen;Yiyi Liao;Bo Wu;Yongfeng Deng
{"title":"RA-UNet:一种新的深度学习分割方法,用于细粒度扫描电镜(SEM)图像的半导体晶圆缺陷分析","authors":"Yibo Qiao;Yanning Chen;Fang Liu;Zhouzhouzhou Mei;Yuening Luo;Yining Chen;Yiyi Liao;Bo Wu;Yongfeng Deng","doi":"10.1109/TSM.2025.3546296","DOIUrl":null,"url":null,"abstract":"In the rapidly evolving field of semiconductor manufacturing, the escalating complexity of integrated circuits poses significant challenges in identifying and analyzing defects, crucial for maintaining high wafer yield. Traditional approaches are hindered by the intricate nature of defect morphology and the scarcity of high-quality scanning electron microscope (SEM) data, essential for effective algorithm training. In this study, we propose RA-UNet for fine-grained SEM defect segmentation. RA-UNet adopts a U-shaped architecture that leverages residual networks for defect feature extraction, and introduces a residual architecture and a novel attention module to enhance the network’s focus on defects. To validate the effectiveness of the proposed model, we meticulously gathered and labeled a real SEM data set from a semiconductor manufacturing factory. The results demonstrate that RA-UNet outperforms existing methods in semiconductor defect segmentation, achieving an Intersection over Union (IoU) score of 71.92%. These findings highlight its potential as an effective tool for semiconductor defect analysis.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 2","pages":"185-193"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RA-UNet: A New Deep Learning Segmentation Method for Semiconductor Wafer Defect Analysis on Fine-Grained Scanning Electron Microscope (SEM) Images\",\"authors\":\"Yibo Qiao;Yanning Chen;Fang Liu;Zhouzhouzhou Mei;Yuening Luo;Yining Chen;Yiyi Liao;Bo Wu;Yongfeng Deng\",\"doi\":\"10.1109/TSM.2025.3546296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the rapidly evolving field of semiconductor manufacturing, the escalating complexity of integrated circuits poses significant challenges in identifying and analyzing defects, crucial for maintaining high wafer yield. Traditional approaches are hindered by the intricate nature of defect morphology and the scarcity of high-quality scanning electron microscope (SEM) data, essential for effective algorithm training. In this study, we propose RA-UNet for fine-grained SEM defect segmentation. RA-UNet adopts a U-shaped architecture that leverages residual networks for defect feature extraction, and introduces a residual architecture and a novel attention module to enhance the network’s focus on defects. To validate the effectiveness of the proposed model, we meticulously gathered and labeled a real SEM data set from a semiconductor manufacturing factory. The results demonstrate that RA-UNet outperforms existing methods in semiconductor defect segmentation, achieving an Intersection over Union (IoU) score of 71.92%. These findings highlight its potential as an effective tool for semiconductor defect analysis.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 2\",\"pages\":\"185-193\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10906541/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10906541/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在快速发展的半导体制造领域,集成电路的复杂性不断上升,在识别和分析缺陷方面提出了重大挑战,这对于保持高晶圆产量至关重要。传统的方法受到缺陷形态的复杂性和高质量扫描电子显微镜(SEM)数据的缺乏的阻碍,而这些数据对于有效的算法训练至关重要。在这项研究中,我们提出了RA-UNet用于细粒度SEM缺陷分割。RA-UNet采用u型架构,利用残差网络进行缺陷特征提取,并引入残差架构和新颖的关注模块,增强网络对缺陷的关注。为了验证所提出模型的有效性,我们精心收集并标记了来自半导体制造工厂的真实SEM数据集。结果表明,RA-UNet在半导体缺陷分割方面优于现有方法,实现了71.92%的交集超过联盟(IoU)分数。这些发现突出了它作为半导体缺陷分析的有效工具的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RA-UNet: A New Deep Learning Segmentation Method for Semiconductor Wafer Defect Analysis on Fine-Grained Scanning Electron Microscope (SEM) Images
In the rapidly evolving field of semiconductor manufacturing, the escalating complexity of integrated circuits poses significant challenges in identifying and analyzing defects, crucial for maintaining high wafer yield. Traditional approaches are hindered by the intricate nature of defect morphology and the scarcity of high-quality scanning electron microscope (SEM) data, essential for effective algorithm training. In this study, we propose RA-UNet for fine-grained SEM defect segmentation. RA-UNet adopts a U-shaped architecture that leverages residual networks for defect feature extraction, and introduces a residual architecture and a novel attention module to enhance the network’s focus on defects. To validate the effectiveness of the proposed model, we meticulously gathered and labeled a real SEM data set from a semiconductor manufacturing factory. The results demonstrate that RA-UNet outperforms existing methods in semiconductor defect segmentation, achieving an Intersection over Union (IoU) score of 71.92%. These findings highlight its potential as an effective tool for semiconductor defect analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Semiconductor Manufacturing 工程技术-工程:电子与电气
CiteScore
5.20
自引率
11.10%
发文量
101
审稿时长
3.3 months
期刊介绍: The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信