Jongmin Lee;Jungtae Park;Il-Jin Kim;Haeun Lee;Sehoon Park
{"title":"室外空气纳米污染对eSiGe缺陷产生的量化影响及基于机器学习的预测建模","authors":"Jongmin Lee;Jungtae Park;Il-Jin Kim;Haeun Lee;Sehoon Park","doi":"10.1109/TSM.2025.3554783","DOIUrl":null,"url":null,"abstract":"A thorough investigation was conducted to determine the impact of outdoor airborne nanoparticles on defect generation during semiconductor manufacturing. Periods of elevated airborne particle levels, along with increased occurrences of embedded Silicon-Germanium (eSiGe) defects, were analyzed using experimental bare wafers designed to capture nanoparticles. Defect counts were analyzed to trace their origins. A novel data processing algorithm was developed to clarify and quantify the relationship between external airborne nanoparticles and defect formation. The findings indicate that eSiGe defect particles attributable to external airborne nano-contamination were generated at rates ranging from 1% to 6%, depending on the fab site. The robustness of the algorithm was validated through the application of an Artificial Neural Network (ANN) technique. Key parameters influencing eSiGe defects, identified as outdoor PM2.5 and Fab particles, were further analyzed using Random Forest Regression (RFG) and Quantile Regression (QR). Additionally, the application of Support Vector Regression (SVR) significantly enhanced the prediction accuracy of eSiGe defect particles, achieving an improvement of approximately 56% compared to RFG modeling. This study uniquely combines short-term experimental methods with long-term inline data science techniques to elucidate the effects of outdoor nanoparticles on eSiGe defects.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 2","pages":"178-184"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Impact of Outdoor Airborne Nano-Contamination on eSiGe Defect Generation and Machine Learning-Based Predictive Modeling\",\"authors\":\"Jongmin Lee;Jungtae Park;Il-Jin Kim;Haeun Lee;Sehoon Park\",\"doi\":\"10.1109/TSM.2025.3554783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A thorough investigation was conducted to determine the impact of outdoor airborne nanoparticles on defect generation during semiconductor manufacturing. Periods of elevated airborne particle levels, along with increased occurrences of embedded Silicon-Germanium (eSiGe) defects, were analyzed using experimental bare wafers designed to capture nanoparticles. Defect counts were analyzed to trace their origins. A novel data processing algorithm was developed to clarify and quantify the relationship between external airborne nanoparticles and defect formation. The findings indicate that eSiGe defect particles attributable to external airborne nano-contamination were generated at rates ranging from 1% to 6%, depending on the fab site. The robustness of the algorithm was validated through the application of an Artificial Neural Network (ANN) technique. Key parameters influencing eSiGe defects, identified as outdoor PM2.5 and Fab particles, were further analyzed using Random Forest Regression (RFG) and Quantile Regression (QR). Additionally, the application of Support Vector Regression (SVR) significantly enhanced the prediction accuracy of eSiGe defect particles, achieving an improvement of approximately 56% compared to RFG modeling. This study uniquely combines short-term experimental methods with long-term inline data science techniques to elucidate the effects of outdoor nanoparticles on eSiGe defects.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 2\",\"pages\":\"178-184\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10939017/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10939017/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Quantifying the Impact of Outdoor Airborne Nano-Contamination on eSiGe Defect Generation and Machine Learning-Based Predictive Modeling
A thorough investigation was conducted to determine the impact of outdoor airborne nanoparticles on defect generation during semiconductor manufacturing. Periods of elevated airborne particle levels, along with increased occurrences of embedded Silicon-Germanium (eSiGe) defects, were analyzed using experimental bare wafers designed to capture nanoparticles. Defect counts were analyzed to trace their origins. A novel data processing algorithm was developed to clarify and quantify the relationship between external airborne nanoparticles and defect formation. The findings indicate that eSiGe defect particles attributable to external airborne nano-contamination were generated at rates ranging from 1% to 6%, depending on the fab site. The robustness of the algorithm was validated through the application of an Artificial Neural Network (ANN) technique. Key parameters influencing eSiGe defects, identified as outdoor PM2.5 and Fab particles, were further analyzed using Random Forest Regression (RFG) and Quantile Regression (QR). Additionally, the application of Support Vector Regression (SVR) significantly enhanced the prediction accuracy of eSiGe defect particles, achieving an improvement of approximately 56% compared to RFG modeling. This study uniquely combines short-term experimental methods with long-term inline data science techniques to elucidate the effects of outdoor nanoparticles on eSiGe defects.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.