Quan Yuan;Anna Peczek;Joe Frankel;Dan Rishavy;Christian Mai;Eric Christenson;Divya Pratap;Lars Zimmermann
{"title":"用于硅光子集成电路的全自动晶圆级边缘耦合测量系统","authors":"Quan Yuan;Anna Peczek;Joe Frankel;Dan Rishavy;Christian Mai;Eric Christenson;Divya Pratap;Lars Zimmermann","doi":"10.1109/TSM.2025.3552349","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel, fully automated wafer-level edge coupling measurement system designed specifically for silicon photonic integrated circuits (PICs). This system integrates state-of-the-art technologies, including optical probes, advanced alignment algorithms, and precision calibration processes, to ensure high coupling efficiency, rapid throughput, and exceptional repeatability. The optical probe, known as the Pharos lens, incorporates a periscope structure to facilitate effective vertical-to-horizontal light conversion, providing ultra-high coupling efficiency. The system also leverages adaptive optics algorithms to enhance measurement accuracy, compensating for optical aberrations and other distortions. Through extensive testing on 200 mm silicon wafers fabricated with <inline-formula> <tex-math>$0.25~\\mu $ </tex-math></inline-formula>m photonic BiCMOS technology, we demonstrate that our system achieves consistent coupling efficiency with less than 0.2 dB of repeatability and remarkable stability, with fluctuations within 0.01 dB during 10-minute testing intervals. Our results underline the system’s ability to address the critical challenges in modern photonic testing and highlight its potential for improving manufacturing processes in the semiconductor and photonic industries.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"38 2","pages":"168-177"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934143","citationCount":"0","resultStr":"{\"title\":\"Fully Automated Wafer-Level Edge Coupling Measurement System for Silicon Photonics Integrated Circuits\",\"authors\":\"Quan Yuan;Anna Peczek;Joe Frankel;Dan Rishavy;Christian Mai;Eric Christenson;Divya Pratap;Lars Zimmermann\",\"doi\":\"10.1109/TSM.2025.3552349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a novel, fully automated wafer-level edge coupling measurement system designed specifically for silicon photonic integrated circuits (PICs). This system integrates state-of-the-art technologies, including optical probes, advanced alignment algorithms, and precision calibration processes, to ensure high coupling efficiency, rapid throughput, and exceptional repeatability. The optical probe, known as the Pharos lens, incorporates a periscope structure to facilitate effective vertical-to-horizontal light conversion, providing ultra-high coupling efficiency. The system also leverages adaptive optics algorithms to enhance measurement accuracy, compensating for optical aberrations and other distortions. Through extensive testing on 200 mm silicon wafers fabricated with <inline-formula> <tex-math>$0.25~\\\\mu $ </tex-math></inline-formula>m photonic BiCMOS technology, we demonstrate that our system achieves consistent coupling efficiency with less than 0.2 dB of repeatability and remarkable stability, with fluctuations within 0.01 dB during 10-minute testing intervals. Our results underline the system’s ability to address the critical challenges in modern photonic testing and highlight its potential for improving manufacturing processes in the semiconductor and photonic industries.\",\"PeriodicalId\":451,\"journal\":{\"name\":\"IEEE Transactions on Semiconductor Manufacturing\",\"volume\":\"38 2\",\"pages\":\"168-177\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10934143\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Semiconductor Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10934143/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10934143/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Fully Automated Wafer-Level Edge Coupling Measurement System for Silicon Photonics Integrated Circuits
In this work, we introduce a novel, fully automated wafer-level edge coupling measurement system designed specifically for silicon photonic integrated circuits (PICs). This system integrates state-of-the-art technologies, including optical probes, advanced alignment algorithms, and precision calibration processes, to ensure high coupling efficiency, rapid throughput, and exceptional repeatability. The optical probe, known as the Pharos lens, incorporates a periscope structure to facilitate effective vertical-to-horizontal light conversion, providing ultra-high coupling efficiency. The system also leverages adaptive optics algorithms to enhance measurement accuracy, compensating for optical aberrations and other distortions. Through extensive testing on 200 mm silicon wafers fabricated with $0.25~\mu $ m photonic BiCMOS technology, we demonstrate that our system achieves consistent coupling efficiency with less than 0.2 dB of repeatability and remarkable stability, with fluctuations within 0.01 dB during 10-minute testing intervals. Our results underline the system’s ability to address the critical challenges in modern photonic testing and highlight its potential for improving manufacturing processes in the semiconductor and photonic industries.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.