{"title":"纳米硒与亚硒酸盐肥料:对毒理学、抗氧化防御和铁死亡途径的影响","authors":"Qiting Fang, Zhonghua Liu, Kaixi Wang","doi":"10.1021/acs.jafc.5c02034","DOIUrl":null,"url":null,"abstract":"Selenium (Se) foliar fertilizers enhance crop nutrition and address human selenium deficiency, while improper application may lead to excessive intake and residue accumulation. Our study comprehensively assessed the toxicity and function of novel selenium nanoparticles and traditional sodium selenite fertilizers across cell, zebrafish, and murine models. Both fertilizers enhanced antioxidant pathways at low doses, but selenium nanoparticles exhibited stronger antioxidant and ferroptosis-modulating effects with lower toxicity at a high dose. Sodium selenite increased total and lipid ROS production, leading to decreased viability of cells and increased distortion and mortality of zebrafish. In mice, sodium selenite induced hepatic toxicity and decreased GPX4. Transcriptome analysis revealed that sodium selenite downregulated c-JUN and APOA4, weakening the antioxidant defense, whereas selenium nanoparticles promoted ferroptosis resistance through FGF21. These findings suggest selenium nanoparticles as a safer alternative for Se biofortification, mitigating health risks while supporting food security and environmental sustainability.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"87 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenium Nanoparticles vs Selenite Fertilizers: Implications for Toxicological Profiles, Antioxidant Defense, and Ferroptosis Pathways\",\"authors\":\"Qiting Fang, Zhonghua Liu, Kaixi Wang\",\"doi\":\"10.1021/acs.jafc.5c02034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selenium (Se) foliar fertilizers enhance crop nutrition and address human selenium deficiency, while improper application may lead to excessive intake and residue accumulation. Our study comprehensively assessed the toxicity and function of novel selenium nanoparticles and traditional sodium selenite fertilizers across cell, zebrafish, and murine models. Both fertilizers enhanced antioxidant pathways at low doses, but selenium nanoparticles exhibited stronger antioxidant and ferroptosis-modulating effects with lower toxicity at a high dose. Sodium selenite increased total and lipid ROS production, leading to decreased viability of cells and increased distortion and mortality of zebrafish. In mice, sodium selenite induced hepatic toxicity and decreased GPX4. Transcriptome analysis revealed that sodium selenite downregulated c-JUN and APOA4, weakening the antioxidant defense, whereas selenium nanoparticles promoted ferroptosis resistance through FGF21. These findings suggest selenium nanoparticles as a safer alternative for Se biofortification, mitigating health risks while supporting food security and environmental sustainability.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.5c02034\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c02034","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Selenium Nanoparticles vs Selenite Fertilizers: Implications for Toxicological Profiles, Antioxidant Defense, and Ferroptosis Pathways
Selenium (Se) foliar fertilizers enhance crop nutrition and address human selenium deficiency, while improper application may lead to excessive intake and residue accumulation. Our study comprehensively assessed the toxicity and function of novel selenium nanoparticles and traditional sodium selenite fertilizers across cell, zebrafish, and murine models. Both fertilizers enhanced antioxidant pathways at low doses, but selenium nanoparticles exhibited stronger antioxidant and ferroptosis-modulating effects with lower toxicity at a high dose. Sodium selenite increased total and lipid ROS production, leading to decreased viability of cells and increased distortion and mortality of zebrafish. In mice, sodium selenite induced hepatic toxicity and decreased GPX4. Transcriptome analysis revealed that sodium selenite downregulated c-JUN and APOA4, weakening the antioxidant defense, whereas selenium nanoparticles promoted ferroptosis resistance through FGF21. These findings suggest selenium nanoparticles as a safer alternative for Se biofortification, mitigating health risks while supporting food security and environmental sustainability.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.