负栅极电压关断状态下p-GaN HEMTs重离子辐照硬度的实验研究

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xintong Xie;Shuxiang Sun;Jingyu Shen;Renkuan Liu;Gaoqiang Deng;Cheng Yang;Xin Zhou;Jie Wei;Bo Zhang;Xiaorong Luo
{"title":"负栅极电压关断状态下p-GaN HEMTs重离子辐照硬度的实验研究","authors":"Xintong Xie;Shuxiang Sun;Jingyu Shen;Renkuan Liu;Gaoqiang Deng;Cheng Yang;Xin Zhou;Jie Wei;Bo Zhang;Xiaorong Luo","doi":"10.1109/LED.2025.3545440","DOIUrl":null,"url":null,"abstract":"In this work, it is demonstrated for the first time that a negative gate voltage (<inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula>) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula> is applied, as opposed to using zero <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula>. Furthermore, a negative <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula> suppresses post-irradiation shifts in gate capacitance (<inline-formula> <tex-math>${C} _{\\text {G}}$ </tex-math></inline-formula>), threshold voltage (<inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula>) and off-state drain leakage current (<inline-formula> <tex-math>${I} _{\\text {DSS}}$ </tex-math></inline-formula>), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative <inline-formula> <tex-math>${V} _{\\textit {GS}}$ </tex-math></inline-formula> enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of <inline-formula> <tex-math>${C} _{G}$ </tex-math></inline-formula>, <inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${I} _{\\text {DSS}}$ </tex-math></inline-formula> are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"709-712"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Heavy Ion Irradiation Hardness for p-GaN HEMTs Under Off-State With Negative Gate Voltage\",\"authors\":\"Xintong Xie;Shuxiang Sun;Jingyu Shen;Renkuan Liu;Gaoqiang Deng;Cheng Yang;Xin Zhou;Jie Wei;Bo Zhang;Xiaorong Luo\",\"doi\":\"10.1109/LED.2025.3545440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, it is demonstrated for the first time that a negative gate voltage (<inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula>) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula> is applied, as opposed to using zero <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula>. Furthermore, a negative <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula> suppresses post-irradiation shifts in gate capacitance (<inline-formula> <tex-math>${C} _{\\\\text {G}}$ </tex-math></inline-formula>), threshold voltage (<inline-formula> <tex-math>${V} _{\\\\text {th}}$ </tex-math></inline-formula>) and off-state drain leakage current (<inline-formula> <tex-math>${I} _{\\\\text {DSS}}$ </tex-math></inline-formula>), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative <inline-formula> <tex-math>${V} _{\\\\textit {GS}}$ </tex-math></inline-formula> enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of <inline-formula> <tex-math>${C} _{G}$ </tex-math></inline-formula>, <inline-formula> <tex-math>${V} _{\\\\text {th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${I} _{\\\\text {DSS}}$ </tex-math></inline-formula> are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"709-712\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10902430/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902430/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,首次证明了在关闭状态时负栅极电压(${V} _{\text {GS}}}$)可以提高100 V e模式p-GaN hemt的单事件效应(SEE)硬度。当受到线性能量转移为78.40 MeV/(mg/cm2)的Ta离子辐照时,与使用零${V} _{\text {GS}}$相比,使用负${V} _{\text {GS}}$可以显著降低辐照期间的单事件瞬态(SET)电流峰值。此外,负的${V} _{\text {GS}}$抑制辐照后栅极电容(${C} _{\text {G}}$)、阈值电压(${V} _{\text {th}}$)和断态漏极漏电流(${I} _{\text {DSS}}$)的位移,表明对SEE的稳定性提高。已经进行了数值模拟,以提供对潜在机制的物理见解。发现负的${V} _{\textit {GS}}$可以同时去除辐射诱导的空穴,从而抑制SET电流。${C} _{G}$、${V} _{\text {th}}$和${I} _{\text {DSS}}$的辐照后降解分别归因于辐射诱导的Schottky结、AlGaN/GaN界面和缓冲层的类受体陷阱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Study of Heavy Ion Irradiation Hardness for p-GaN HEMTs Under Off-State With Negative Gate Voltage
In this work, it is demonstrated for the first time that a negative gate voltage ( ${V} _{\text {GS}}$ ) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative ${V} _{\text {GS}}$ is applied, as opposed to using zero ${V} _{\text {GS}}$ . Furthermore, a negative ${V} _{\text {GS}}$ suppresses post-irradiation shifts in gate capacitance ( ${C} _{\text {G}}$ ), threshold voltage ( ${V} _{\text {th}}$ ) and off-state drain leakage current ( ${I} _{\text {DSS}}$ ), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative ${V} _{\textit {GS}}$ enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of ${C} _{G}$ , ${V} _{\text {th}}$ and ${I} _{\text {DSS}}$ are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信