{"title":"负栅极电压关断状态下p-GaN HEMTs重离子辐照硬度的实验研究","authors":"Xintong Xie;Shuxiang Sun;Jingyu Shen;Renkuan Liu;Gaoqiang Deng;Cheng Yang;Xin Zhou;Jie Wei;Bo Zhang;Xiaorong Luo","doi":"10.1109/LED.2025.3545440","DOIUrl":null,"url":null,"abstract":"In this work, it is demonstrated for the first time that a negative gate voltage (<inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula>) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula> is applied, as opposed to using zero <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula>. Furthermore, a negative <inline-formula> <tex-math>${V} _{\\text {GS}}$ </tex-math></inline-formula> suppresses post-irradiation shifts in gate capacitance (<inline-formula> <tex-math>${C} _{\\text {G}}$ </tex-math></inline-formula>), threshold voltage (<inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula>) and off-state drain leakage current (<inline-formula> <tex-math>${I} _{\\text {DSS}}$ </tex-math></inline-formula>), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative <inline-formula> <tex-math>${V} _{\\textit {GS}}$ </tex-math></inline-formula> enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of <inline-formula> <tex-math>${C} _{G}$ </tex-math></inline-formula>, <inline-formula> <tex-math>${V} _{\\text {th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${I} _{\\text {DSS}}$ </tex-math></inline-formula> are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"709-712"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Heavy Ion Irradiation Hardness for p-GaN HEMTs Under Off-State With Negative Gate Voltage\",\"authors\":\"Xintong Xie;Shuxiang Sun;Jingyu Shen;Renkuan Liu;Gaoqiang Deng;Cheng Yang;Xin Zhou;Jie Wei;Bo Zhang;Xiaorong Luo\",\"doi\":\"10.1109/LED.2025.3545440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, it is demonstrated for the first time that a negative gate voltage (<inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula>) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula> is applied, as opposed to using zero <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula>. Furthermore, a negative <inline-formula> <tex-math>${V} _{\\\\text {GS}}$ </tex-math></inline-formula> suppresses post-irradiation shifts in gate capacitance (<inline-formula> <tex-math>${C} _{\\\\text {G}}$ </tex-math></inline-formula>), threshold voltage (<inline-formula> <tex-math>${V} _{\\\\text {th}}$ </tex-math></inline-formula>) and off-state drain leakage current (<inline-formula> <tex-math>${I} _{\\\\text {DSS}}$ </tex-math></inline-formula>), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative <inline-formula> <tex-math>${V} _{\\\\textit {GS}}$ </tex-math></inline-formula> enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of <inline-formula> <tex-math>${C} _{G}$ </tex-math></inline-formula>, <inline-formula> <tex-math>${V} _{\\\\text {th}}$ </tex-math></inline-formula> and <inline-formula> <tex-math>${I} _{\\\\text {DSS}}$ </tex-math></inline-formula> are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"709-712\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10902430/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10902430/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Experimental Study of Heavy Ion Irradiation Hardness for p-GaN HEMTs Under Off-State With Negative Gate Voltage
In this work, it is demonstrated for the first time that a negative gate voltage (${V} _{\text {GS}}$ ) during off-state can enhance the single-event effect (SEE) hardness of the 100-V E-mode p-GaN HEMTs. When subjected to irradiation from Ta ions with linear energy transfer of 78.40 MeV/(mg/cm2), the single-event transient (SET) current peak during irradiation can be significantly decreased if a negative ${V} _{\text {GS}}$ is applied, as opposed to using zero ${V} _{\text {GS}}$ . Furthermore, a negative ${V} _{\text {GS}}$ suppresses post-irradiation shifts in gate capacitance (${C} _{\text {G}}$ ), threshold voltage (${V} _{\text {th}}$ ) and off-state drain leakage current (${I} _{\text {DSS}}$ ), indicating improved stability against SEE. Numerical simulations have been performed to offer a physical insight into the underlying mechanisms. It is found that a negative ${V} _{\textit {GS}}$ enables the simultaneous removal for radiation-induced holes and thus suppresses the SET current. The post-irradiation degradation of ${C} _{G}$ , ${V} _{\text {th}}$ and ${I} _{\text {DSS}}$ are attributed to the radiation-induced acceptor-like traps at the Schottky junction, the AlGaN/GaN interface and the buffer layer, respectively.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.