在4H-SiC衬底上采用异质外延ε-Ga₂O₃的大电流e型mosfet的演示

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shengheng Zhu;Linxuan Li;Tiecheng Luo;Weiqu Chen;Chenhong Huang;Xifu Chen;Zhanyun Huang;Zimin Chen;Yanli Pei;Gang Wang;Xing Lu
{"title":"在4H-SiC衬底上采用异质外延ε-Ga₂O₃的大电流e型mosfet的演示","authors":"Shengheng Zhu;Linxuan Li;Tiecheng Luo;Weiqu Chen;Chenhong Huang;Xifu Chen;Zhanyun Huang;Zimin Chen;Yanli Pei;Gang Wang;Xing Lu","doi":"10.1109/LED.2025.3553520","DOIUrl":null,"url":null,"abstract":"High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration (<inline-formula> <tex-math>${n}_{\\text {s}}\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>${3}\\times {10} ^{{14}}$ </tex-math></inline-formula> cm−2 combined with a mobility of 47.1 cm2/V<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula> s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length (<inline-formula> <tex-math>${L}_{\\text {CH}}\\text {)}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$2~\\mu $ </tex-math></inline-formula>m exhibited a high maximum drain current density (<inline-formula> <tex-math>${I}_{\\text {DS, max}}\\text {)}$ </tex-math></inline-formula> of 209 mA/mm, a positive threshold voltage (<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula> of 2.7 V, a large peak transconductance (<inline-formula> <tex-math>${G}_{\\text {m, max}}\\text {)}$ </tex-math></inline-formula> of 42 mS/mm, and a high on/off current ratio (<inline-formula> <tex-math>${I}_{\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {off}}\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>. These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"721-724"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of High-Current E-Mode MOSFETs Using Heteroepitaxial ε-Ga₂O₃ on 4H-SiC Substrates\",\"authors\":\"Shengheng Zhu;Linxuan Li;Tiecheng Luo;Weiqu Chen;Chenhong Huang;Xifu Chen;Zhanyun Huang;Zimin Chen;Yanli Pei;Gang Wang;Xing Lu\",\"doi\":\"10.1109/LED.2025.3553520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration (<inline-formula> <tex-math>${n}_{\\\\text {s}}\\\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>${3}\\\\times {10} ^{{14}}$ </tex-math></inline-formula> cm−2 combined with a mobility of 47.1 cm2/V<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula> s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length (<inline-formula> <tex-math>${L}_{\\\\text {CH}}\\\\text {)}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$2~\\\\mu $ </tex-math></inline-formula>m exhibited a high maximum drain current density (<inline-formula> <tex-math>${I}_{\\\\text {DS, max}}\\\\text {)}$ </tex-math></inline-formula> of 209 mA/mm, a positive threshold voltage (<inline-formula> <tex-math>${V}_{\\\\text {th}}\\\\text {)}$ </tex-math></inline-formula> of 2.7 V, a large peak transconductance (<inline-formula> <tex-math>${G}_{\\\\text {m, max}}\\\\text {)}$ </tex-math></inline-formula> of 42 mS/mm, and a high on/off current ratio (<inline-formula> <tex-math>${I}_{\\\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\\\text {off}}\\\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>. These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"721-724\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937219/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937219/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高电流增强模式(e模式)金属氧化物半导体场效应晶体管(mosfet)已经被证明使用异质外延$\varepsilon $ -Ga2O3在4H-SiC衬底上。该器件具有无意掺杂(UID)通道和超高导电性的访问区域,这是通过选择性区域氟等离子体表面掺杂工艺实现的。在通道区域,获得了较高的载流子浓度(${n}_{\text {s}}\text {)}$超过${3}\times {10} ^{{14}}$ cm−2)和47.1 cm2/V $\cdot $ s的迁移率,显著降低了寄生抗性。该e型MOSFET的沟道长度${L}_{\text {CH}}\text {)}$为$2~\mu $ m,最大漏极电流密度${I}_{\text {DS, max}}\text {)}$为209 mA/mm,正阈值电压${V}_{\text {th}}\text {)}$为2.7 V,峰值跨导率${G}_{\text {m, max}}\text {)}$为42 mS/mm,通断电流比${I}_{\text {on}}$ / ${I}_{\text {off}}\text {)}$超过$10^{{7}}$。这些具有竞争力的性能指标主要归功于接入区的低寄生电阻和4H-SiC衬底的高导热性,突出了异质外延$\varepsilon $ -Ga2O3-on-4H-SiC mosfet在高功率和高频应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of High-Current E-Mode MOSFETs Using Heteroepitaxial ε-Ga₂O₃ on 4H-SiC Substrates
High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial $\varepsilon $ -Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration ( ${n}_{\text {s}}\text {)}$ exceeding ${3}\times {10} ^{{14}}$ cm−2 combined with a mobility of 47.1 cm2/V $\cdot $ s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length ( ${L}_{\text {CH}}\text {)}$ of $2~\mu $ m exhibited a high maximum drain current density ( ${I}_{\text {DS, max}}\text {)}$ of 209 mA/mm, a positive threshold voltage ( ${V}_{\text {th}}\text {)}$ of 2.7 V, a large peak transconductance ( ${G}_{\text {m, max}}\text {)}$ of 42 mS/mm, and a high on/off current ratio ( ${I}_{\text {on}}$ / ${I}_{\text {off}}\text {)}$ exceeding $10^{{7}}$ . These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial $\varepsilon $ -Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信