{"title":"在4H-SiC衬底上采用异质外延ε-Ga₂O₃的大电流e型mosfet的演示","authors":"Shengheng Zhu;Linxuan Li;Tiecheng Luo;Weiqu Chen;Chenhong Huang;Xifu Chen;Zhanyun Huang;Zimin Chen;Yanli Pei;Gang Wang;Xing Lu","doi":"10.1109/LED.2025.3553520","DOIUrl":null,"url":null,"abstract":"High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration (<inline-formula> <tex-math>${n}_{\\text {s}}\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>${3}\\times {10} ^{{14}}$ </tex-math></inline-formula> cm−2 combined with a mobility of 47.1 cm2/V<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula> s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length (<inline-formula> <tex-math>${L}_{\\text {CH}}\\text {)}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$2~\\mu $ </tex-math></inline-formula>m exhibited a high maximum drain current density (<inline-formula> <tex-math>${I}_{\\text {DS, max}}\\text {)}$ </tex-math></inline-formula> of 209 mA/mm, a positive threshold voltage (<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula> of 2.7 V, a large peak transconductance (<inline-formula> <tex-math>${G}_{\\text {m, max}}\\text {)}$ </tex-math></inline-formula> of 42 mS/mm, and a high on/off current ratio (<inline-formula> <tex-math>${I}_{\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\text {off}}\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>. These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial <inline-formula> <tex-math>$\\varepsilon $ </tex-math></inline-formula>-Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 5","pages":"721-724"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of High-Current E-Mode MOSFETs Using Heteroepitaxial ε-Ga₂O₃ on 4H-SiC Substrates\",\"authors\":\"Shengheng Zhu;Linxuan Li;Tiecheng Luo;Weiqu Chen;Chenhong Huang;Xifu Chen;Zhanyun Huang;Zimin Chen;Yanli Pei;Gang Wang;Xing Lu\",\"doi\":\"10.1109/LED.2025.3553520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration (<inline-formula> <tex-math>${n}_{\\\\text {s}}\\\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>${3}\\\\times {10} ^{{14}}$ </tex-math></inline-formula> cm−2 combined with a mobility of 47.1 cm2/V<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula> s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length (<inline-formula> <tex-math>${L}_{\\\\text {CH}}\\\\text {)}$ </tex-math></inline-formula> of <inline-formula> <tex-math>$2~\\\\mu $ </tex-math></inline-formula>m exhibited a high maximum drain current density (<inline-formula> <tex-math>${I}_{\\\\text {DS, max}}\\\\text {)}$ </tex-math></inline-formula> of 209 mA/mm, a positive threshold voltage (<inline-formula> <tex-math>${V}_{\\\\text {th}}\\\\text {)}$ </tex-math></inline-formula> of 2.7 V, a large peak transconductance (<inline-formula> <tex-math>${G}_{\\\\text {m, max}}\\\\text {)}$ </tex-math></inline-formula> of 42 mS/mm, and a high on/off current ratio (<inline-formula> <tex-math>${I}_{\\\\text {on}}$ </tex-math></inline-formula>/<inline-formula> <tex-math>${I}_{\\\\text {off}}\\\\text {)}$ </tex-math></inline-formula> exceeding <inline-formula> <tex-math>$10^{{7}}$ </tex-math></inline-formula>. These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial <inline-formula> <tex-math>$\\\\varepsilon $ </tex-math></inline-formula>-Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 5\",\"pages\":\"721-724\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937219/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937219/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Demonstration of High-Current E-Mode MOSFETs Using Heteroepitaxial ε-Ga₂O₃ on 4H-SiC Substrates
High-current enhancement mode (E-mode) metal-oxide-semiconductor field effect transistors (MOSFETs) have been demonstrated using heteroepitaxial $\varepsilon $ -Ga2O3 on 4H-SiC substrates. The devices featured an unintentionally-doped (UID) channel and ultra-highly conductive access regions, which were realized by a selective-area fluorine-plasma surface doping process. In the access regions, a high sheet carrier concentration (${n}_{\text {s}}\text {)}$ exceeding ${3}\times {10} ^{{14}}$ cm−2 combined with a mobility of 47.1 cm2/V$\cdot $ s was achieved, significantly reducing the parasitic resistance. The fabricated E-mode MOSFET with a channel length (${L}_{\text {CH}}\text {)}$ of $2~\mu $ m exhibited a high maximum drain current density (${I}_{\text {DS, max}}\text {)}$ of 209 mA/mm, a positive threshold voltage (${V}_{\text {th}}\text {)}$ of 2.7 V, a large peak transconductance (${G}_{\text {m, max}}\text {)}$ of 42 mS/mm, and a high on/off current ratio (${I}_{\text {on}}$ /${I}_{\text {off}}\text {)}$ exceeding $10^{{7}}$ . These competitive performance metrics are mainly attributed to the low parasitic resistance in the access regions and the high thermal conductivity of the 4H-SiC substrate, highlighting the great potential of heteroepitaxial $\varepsilon $ -Ga2O3-on-4H-SiC MOSFETs for high-power and high-frequency applications.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.