纳米技术在葡萄栽培中的应用:利用氧化铁纳米颗粒(Fe3O4-NPs)缓解1103 Paulsen砧木的石灰胁迫

IF 2.4 4区 生物学 Q2 PLANT SCIENCES
Selda Daler, Ozkan Kaya, Duran Kaplan
{"title":"纳米技术在葡萄栽培中的应用:利用氧化铁纳米颗粒(Fe3O4-NPs)缓解1103 Paulsen砧木的石灰胁迫","authors":"Selda Daler,&nbsp;Ozkan Kaya,&nbsp;Duran Kaplan","doi":"10.1007/s11738-025-03805-5","DOIUrl":null,"url":null,"abstract":"<div><p>High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe₃O₄-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO<sub>3</sub>). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe<sub>3</sub>O<sub>4</sub>-NP application demonstrated pronounced protective effects: 0.1 ppm Fe<sub>3</sub>O<sub>4</sub>-NPs optimized growth under non-stressed conditions, while 1 ppm Fe<sub>3</sub>O<sub>4</sub>-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe<sub>3</sub>O<sub>4</sub>-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low–moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.</p></div>","PeriodicalId":6973,"journal":{"name":"Acta Physiologiae Plantarum","volume":"47 5","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11738-025-03805-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology in viticulture: alleviating lime stress in 1103 Paulsen Rootstock with iron oxide nanoparticles (Fe3O4-NPs)\",\"authors\":\"Selda Daler,&nbsp;Ozkan Kaya,&nbsp;Duran Kaplan\",\"doi\":\"10.1007/s11738-025-03805-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub>-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe₃O₄-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO<sub>3</sub>). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe<sub>3</sub>O<sub>4</sub>-NP application demonstrated pronounced protective effects: 0.1 ppm Fe<sub>3</sub>O<sub>4</sub>-NPs optimized growth under non-stressed conditions, while 1 ppm Fe<sub>3</sub>O<sub>4</sub>-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe<sub>3</sub>O<sub>4</sub>-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low–moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.</p></div>\",\"PeriodicalId\":6973,\"journal\":{\"name\":\"Acta Physiologiae Plantarum\",\"volume\":\"47 5\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11738-025-03805-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physiologiae Plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11738-025-03805-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physiologiae Plantarum","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s11738-025-03805-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

农业土壤中的高石灰含量对作物生产,特别是葡萄栽培提出了重大挑战。由于石灰胁迫对植物生长的持续不利影响,本研究研究了氧化铁纳米颗粒(Fe3O4-NPs)在1103 Paulsen美国葡萄砧木中缓解石灰胁迫的潜力。我们研究了Fe₃O₄-NPs(0、0.01、0.1和1ppm)在不同石灰应力条件(0%、20%、40%和60% CaCO3)下的效果。研究结果表明,石灰含量的增加会逐渐抑制葡萄的生长,导致地上部鲜重、根鲜重、地上部长和叶片数显著减少。施用Fe3O4-NP显示出明显的保护作用:0.1 ppm Fe3O4-NPs在无胁迫条件下优化生长,而1 ppm Fe3O4-NPs在60%石灰胁迫下显著改善植物性能。值得注意的是,纳米颗粒处理通过减少膜损伤、脂质过氧化和叶片温度来减轻氧化应激,同时保持光合效率和渗透平衡。Fe3O4-NPs在缓解石灰诱导的葡萄胁迫方面表现出显著的潜力,在中低石灰环境中,Fe3O4-NPs的最佳浓度为0.1 ppm,在高石灰含量地区,Fe3O4-NPs的最佳浓度为1 ppm。这些发现提供了一种有针对性的纳米生物技术方法来提高葡萄在钙质土壤中的恢复力,推进可持续葡萄栽培战略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanotechnology in viticulture: alleviating lime stress in 1103 Paulsen Rootstock with iron oxide nanoparticles (Fe3O4-NPs)

High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe3O4-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe₃O₄-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO3). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe3O4-NP application demonstrated pronounced protective effects: 0.1 ppm Fe3O4-NPs optimized growth under non-stressed conditions, while 1 ppm Fe3O4-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe3O4-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low–moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physiologiae Plantarum
Acta Physiologiae Plantarum 生物-植物科学
CiteScore
5.10
自引率
3.80%
发文量
125
审稿时长
3.1 months
期刊介绍: Acta Physiologiae Plantarum is an international journal established in 1978 that publishes peer-reviewed articles on all aspects of plant physiology. The coverage ranges across this research field at various levels of biological organization, from relevant aspects in molecular and cell biology to biochemistry. The coverage is global in scope, offering articles of interest from experts around the world. The range of topics includes measuring effects of environmental pollution on crop species; analysis of genomic organization; effects of drought and climatic conditions on plants; studies of photosynthesis in ornamental plants, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信