基于自适应参数选择和改进小波阈值函数的桥梁温度信号降噪方法研究

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Zhongchu Tian , Jiangyan Wu , Zujun Zhang , Ye Dai , Wei Zhang , Shiyao Wang
{"title":"基于自适应参数选择和改进小波阈值函数的桥梁温度信号降噪方法研究","authors":"Zhongchu Tian ,&nbsp;Jiangyan Wu ,&nbsp;Zujun Zhang ,&nbsp;Ye Dai ,&nbsp;Wei Zhang ,&nbsp;Shiyao Wang","doi":"10.1016/j.measurement.2025.117683","DOIUrl":null,"url":null,"abstract":"<div><div>To address the persistent challenge of environmental noise interference in bridge structural health monitoring, this study proposes a denoising method combining an improved wavelet threshold function with adaptive parameter selection. First, a Coati Optimization Algorithm-Variational Mode Decomposition (COA-VMD) collaborative optimization framework is established, marking the first application of the COA in bridge monitoring. This framework achieves adaptive precision matching of variational mode decomposition parameters (k, α), overcoming inherent limitations of traditional empirical parameter selection in complex environmental signal processing. Second, a novel modal selection theory based on harmonic parameter confidence intervals is proposed. A comprehensive criterion parameter P is constructed through the fusion of approximate entropy and permutation entropy, enabling adaptive inference of noise modes and establishing new standards for modal separation of nonlinear non-stationary signals. Subsequently, an improved wavelet threshold function is designed to resolve the technical bottleneck of effective signal distortion in traditional threshold processing. Validation through both simulated signals and real bridge temperature monitoring data demonstrates: In 15 dB simulation experiments, the signal-to-noise ratio (SNR) improves by 48.7 % with 37.9 % reduction in mean square error (MSE); In practical applications, the noise mode (NM) reaches optimal values while maintaining signal energy ratio (SER) over 99.7 %. This methodology achieves deep integration of bio-inspired algorithms with bridge signal decomposition theory, establishing a new paradigm of “self-optimizing parameters-precise modal identification-gradual noise filtration” for bridge monitoring data denoising.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117683"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on noise reduction method for bridge temperature signal using adaptive parameter selection and improved wavelet threshold function\",\"authors\":\"Zhongchu Tian ,&nbsp;Jiangyan Wu ,&nbsp;Zujun Zhang ,&nbsp;Ye Dai ,&nbsp;Wei Zhang ,&nbsp;Shiyao Wang\",\"doi\":\"10.1016/j.measurement.2025.117683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the persistent challenge of environmental noise interference in bridge structural health monitoring, this study proposes a denoising method combining an improved wavelet threshold function with adaptive parameter selection. First, a Coati Optimization Algorithm-Variational Mode Decomposition (COA-VMD) collaborative optimization framework is established, marking the first application of the COA in bridge monitoring. This framework achieves adaptive precision matching of variational mode decomposition parameters (k, α), overcoming inherent limitations of traditional empirical parameter selection in complex environmental signal processing. Second, a novel modal selection theory based on harmonic parameter confidence intervals is proposed. A comprehensive criterion parameter P is constructed through the fusion of approximate entropy and permutation entropy, enabling adaptive inference of noise modes and establishing new standards for modal separation of nonlinear non-stationary signals. Subsequently, an improved wavelet threshold function is designed to resolve the technical bottleneck of effective signal distortion in traditional threshold processing. Validation through both simulated signals and real bridge temperature monitoring data demonstrates: In 15 dB simulation experiments, the signal-to-noise ratio (SNR) improves by 48.7 % with 37.9 % reduction in mean square error (MSE); In practical applications, the noise mode (NM) reaches optimal values while maintaining signal energy ratio (SER) over 99.7 %. This methodology achieves deep integration of bio-inspired algorithms with bridge signal decomposition theory, establishing a new paradigm of “self-optimizing parameters-precise modal identification-gradual noise filtration” for bridge monitoring data denoising.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"253 \",\"pages\":\"Article 117683\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125010425\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125010425","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

针对桥梁结构健康监测中环境噪声干扰的持续挑战,提出了一种将改进小波阈值函数与自适应参数选择相结合的去噪方法。首先,建立了Coati优化算法-变分模态分解(COA- vmd)协同优化框架,首次将COA算法应用于桥梁监测。该框架实现了变分模态分解参数(k, α)的自适应精确匹配,克服了传统经验参数选择在复杂环境信号处理中的固有局限性。其次,提出了一种基于谐波参数置信区间的模态选择理论。通过近似熵和置换熵的融合,构造了一个综合判据参数P,实现了噪声模式的自适应推断,为非线性非平稳信号的模态分离建立了新的标准。随后,设计了一种改进的小波阈值函数,解决了传统阈值处理中有效信号失真的技术瓶颈。通过模拟信号和真实桥梁温度监测数据验证:在15 dB模拟实验中,信噪比(SNR)提高48.7%,均方误差(MSE)降低37.9%;在实际应用中,噪声模式(NM)在保持信号能量比(SER)在99.7%以上的情况下达到最佳值。该方法实现了仿生算法与桥梁信号分解理论的深度融合,为桥梁监测数据去噪建立了“参数自优化-精确模态识别-逐步噪声过滤”的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on noise reduction method for bridge temperature signal using adaptive parameter selection and improved wavelet threshold function
To address the persistent challenge of environmental noise interference in bridge structural health monitoring, this study proposes a denoising method combining an improved wavelet threshold function with adaptive parameter selection. First, a Coati Optimization Algorithm-Variational Mode Decomposition (COA-VMD) collaborative optimization framework is established, marking the first application of the COA in bridge monitoring. This framework achieves adaptive precision matching of variational mode decomposition parameters (k, α), overcoming inherent limitations of traditional empirical parameter selection in complex environmental signal processing. Second, a novel modal selection theory based on harmonic parameter confidence intervals is proposed. A comprehensive criterion parameter P is constructed through the fusion of approximate entropy and permutation entropy, enabling adaptive inference of noise modes and establishing new standards for modal separation of nonlinear non-stationary signals. Subsequently, an improved wavelet threshold function is designed to resolve the technical bottleneck of effective signal distortion in traditional threshold processing. Validation through both simulated signals and real bridge temperature monitoring data demonstrates: In 15 dB simulation experiments, the signal-to-noise ratio (SNR) improves by 48.7 % with 37.9 % reduction in mean square error (MSE); In practical applications, the noise mode (NM) reaches optimal values while maintaining signal energy ratio (SER) over 99.7 %. This methodology achieves deep integration of bio-inspired algorithms with bridge signal decomposition theory, establishing a new paradigm of “self-optimizing parameters-precise modal identification-gradual noise filtration” for bridge monitoring data denoising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信