Yi-Cheng Sin, Nora Hosny, Addeli Bez Batti Angulski, Do-Hyung Kim, Joseph M. Metzger, Yue Chen
{"title":"基于同位素标记的化学蛋白质组学分析揭示了哺乳动物细胞和组织中丙氨酸修饰的结构和功能特征","authors":"Yi-Cheng Sin, Nora Hosny, Addeli Bez Batti Angulski, Do-Hyung Kim, Joseph M. Metzger, Yue Chen","doi":"10.1021/acs.analchem.5c00660","DOIUrl":null,"url":null,"abstract":"Allysine is a pivotal protein post-translational modification that regulates protein interaction and activities. It is also recognized as a marker of oxidative stress under certain metabolic and physiological conditions. In this study, we developed a capture-and-release chemical proteomics workflow with heavy isotopic labeling that enables system-wide enrichment and site-specific identification of allysine as well as other carbonylated peptides, such as peptides containing glutamic semialdehyde derived from the oxidative damage of arginine and proline, with high confidence. The streamlined workflow led to the identification of 434 allysine sites on 349 proteins in human 293T and HCT116 cells and 317 allysine sites on 157 proteins in mouse muscle tissues without any treatment with an oxidative stress-inducing chemical reagent. We identified 48 histone allysine sites, including 38 sites on core histones in human 293T cells, many of which overlapped with well-characterized histone acetylation and methylation epigenetic marks. Bioinformatic analysis revealed notable characteristics of the amino acid preferences of allysine flanking sequences and the significant depletion of allysine sites in the protein secondary structure in cultured human cells. Pathway analysis showed that allysine substrates were involved in diverse cellular processes including translation, protein folding, and RNA processing in human cells and were enriched with muscle contractile fiber proteins and metabolic enzymes in mouse muscle tissue. Thus, our integrated chemical proteomics analysis revealed the structural and functional features of allysine targets under regular growth conditions in cultured human cells and mouse tissues.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isotopic Labeling-Enabled Chemical Proteomics Analysis Revealed Structural and Functional Features of Allysine Modifications in Mammalian Cells and Tissues\",\"authors\":\"Yi-Cheng Sin, Nora Hosny, Addeli Bez Batti Angulski, Do-Hyung Kim, Joseph M. Metzger, Yue Chen\",\"doi\":\"10.1021/acs.analchem.5c00660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Allysine is a pivotal protein post-translational modification that regulates protein interaction and activities. It is also recognized as a marker of oxidative stress under certain metabolic and physiological conditions. In this study, we developed a capture-and-release chemical proteomics workflow with heavy isotopic labeling that enables system-wide enrichment and site-specific identification of allysine as well as other carbonylated peptides, such as peptides containing glutamic semialdehyde derived from the oxidative damage of arginine and proline, with high confidence. The streamlined workflow led to the identification of 434 allysine sites on 349 proteins in human 293T and HCT116 cells and 317 allysine sites on 157 proteins in mouse muscle tissues without any treatment with an oxidative stress-inducing chemical reagent. We identified 48 histone allysine sites, including 38 sites on core histones in human 293T cells, many of which overlapped with well-characterized histone acetylation and methylation epigenetic marks. Bioinformatic analysis revealed notable characteristics of the amino acid preferences of allysine flanking sequences and the significant depletion of allysine sites in the protein secondary structure in cultured human cells. Pathway analysis showed that allysine substrates were involved in diverse cellular processes including translation, protein folding, and RNA processing in human cells and were enriched with muscle contractile fiber proteins and metabolic enzymes in mouse muscle tissue. Thus, our integrated chemical proteomics analysis revealed the structural and functional features of allysine targets under regular growth conditions in cultured human cells and mouse tissues.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00660\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Isotopic Labeling-Enabled Chemical Proteomics Analysis Revealed Structural and Functional Features of Allysine Modifications in Mammalian Cells and Tissues
Allysine is a pivotal protein post-translational modification that regulates protein interaction and activities. It is also recognized as a marker of oxidative stress under certain metabolic and physiological conditions. In this study, we developed a capture-and-release chemical proteomics workflow with heavy isotopic labeling that enables system-wide enrichment and site-specific identification of allysine as well as other carbonylated peptides, such as peptides containing glutamic semialdehyde derived from the oxidative damage of arginine and proline, with high confidence. The streamlined workflow led to the identification of 434 allysine sites on 349 proteins in human 293T and HCT116 cells and 317 allysine sites on 157 proteins in mouse muscle tissues without any treatment with an oxidative stress-inducing chemical reagent. We identified 48 histone allysine sites, including 38 sites on core histones in human 293T cells, many of which overlapped with well-characterized histone acetylation and methylation epigenetic marks. Bioinformatic analysis revealed notable characteristics of the amino acid preferences of allysine flanking sequences and the significant depletion of allysine sites in the protein secondary structure in cultured human cells. Pathway analysis showed that allysine substrates were involved in diverse cellular processes including translation, protein folding, and RNA processing in human cells and were enriched with muscle contractile fiber proteins and metabolic enzymes in mouse muscle tissue. Thus, our integrated chemical proteomics analysis revealed the structural and functional features of allysine targets under regular growth conditions in cultured human cells and mouse tissues.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.