{"title":"硒蛋白K通过调节TfR-1的棕榈酰化来保护铁代谢失调相关的神经毒性","authors":"Shi-Zheng Jia, Yu Li, Xin-Wen Xu, Yan-Ping Huang, Xiao-Yi Deng, Zhong-Hao Zhang, Guo-Li Song","doi":"10.1021/acs.jafc.4c08266","DOIUrl":null,"url":null,"abstract":"Selenoprotein K (SELENOK), a protein residing in the endoplasmic reticulum (ER), is modulated by dietary selenium and is expressed at elevated levels in neurons. SELENOK has been shown to participate in cellular antioxidant activity and posttranslational palmitoylation. This study presents both in vivo and in vitro evidence that SELENOK deficiency reduces the palmitoylation of TfR-1, thereby impairing transferrin transport and ultimately leading to a decrease in the intracellular iron content, impaired mitochondrial respiratory chain activity and decreased ATP production. Remarkably, restoring SELENOK levels significantly enhanced TfR-1 palmitoylation, increased intracellular iron levels, and restored mitochondrial function, thus ameliorating cognitive deficits in 7 month-old SELENOK knockout mice. Consistent with these findings, iron supplementation also improved mitochondrial function by elevating intracellular iron levels, thereby improving cognitive deficits in 7 month-old SELENOK knockout mice. Therefore, SELENOK exerts its neuroprotective effect by regulating the palmitoylation of TfR-1 to maintain iron homeostasis, thereby protecting mitochondrial function in neurons.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"55 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selenoprotein K Confers Protection against Iron Dyshomeostasis-Related Neurotoxicity by Regulating the Palmitoylation of TfR-1\",\"authors\":\"Shi-Zheng Jia, Yu Li, Xin-Wen Xu, Yan-Ping Huang, Xiao-Yi Deng, Zhong-Hao Zhang, Guo-Li Song\",\"doi\":\"10.1021/acs.jafc.4c08266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Selenoprotein K (SELENOK), a protein residing in the endoplasmic reticulum (ER), is modulated by dietary selenium and is expressed at elevated levels in neurons. SELENOK has been shown to participate in cellular antioxidant activity and posttranslational palmitoylation. This study presents both in vivo and in vitro evidence that SELENOK deficiency reduces the palmitoylation of TfR-1, thereby impairing transferrin transport and ultimately leading to a decrease in the intracellular iron content, impaired mitochondrial respiratory chain activity and decreased ATP production. Remarkably, restoring SELENOK levels significantly enhanced TfR-1 palmitoylation, increased intracellular iron levels, and restored mitochondrial function, thus ameliorating cognitive deficits in 7 month-old SELENOK knockout mice. Consistent with these findings, iron supplementation also improved mitochondrial function by elevating intracellular iron levels, thereby improving cognitive deficits in 7 month-old SELENOK knockout mice. Therefore, SELENOK exerts its neuroprotective effect by regulating the palmitoylation of TfR-1 to maintain iron homeostasis, thereby protecting mitochondrial function in neurons.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c08266\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08266","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Selenoprotein K Confers Protection against Iron Dyshomeostasis-Related Neurotoxicity by Regulating the Palmitoylation of TfR-1
Selenoprotein K (SELENOK), a protein residing in the endoplasmic reticulum (ER), is modulated by dietary selenium and is expressed at elevated levels in neurons. SELENOK has been shown to participate in cellular antioxidant activity and posttranslational palmitoylation. This study presents both in vivo and in vitro evidence that SELENOK deficiency reduces the palmitoylation of TfR-1, thereby impairing transferrin transport and ultimately leading to a decrease in the intracellular iron content, impaired mitochondrial respiratory chain activity and decreased ATP production. Remarkably, restoring SELENOK levels significantly enhanced TfR-1 palmitoylation, increased intracellular iron levels, and restored mitochondrial function, thus ameliorating cognitive deficits in 7 month-old SELENOK knockout mice. Consistent with these findings, iron supplementation also improved mitochondrial function by elevating intracellular iron levels, thereby improving cognitive deficits in 7 month-old SELENOK knockout mice. Therefore, SELENOK exerts its neuroprotective effect by regulating the palmitoylation of TfR-1 to maintain iron homeostasis, thereby protecting mitochondrial function in neurons.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.