利用广角x射线衍射预测木材细胞壁纤维素微纤维角的人工智能方法

IF 5.2 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ricardo Baettig , Ben Ingram
{"title":"利用广角x射线衍射预测木材细胞壁纤维素微纤维角的人工智能方法","authors":"Ricardo Baettig ,&nbsp;Ben Ingram","doi":"10.1016/j.measurement.2025.117402","DOIUrl":null,"url":null,"abstract":"<div><div>In the cell wall of cellulose-based fibers such as wood, the microfibril angle (MFA) in the S2 layer plays a crucial role in determining anisotropic properties. Current Wide-angle X-ray diffraction (WAXD) methods for MFA prediction rely on empirical equations, lacking clear predictive capabilities and remaining stagnant for decades. This study presents a novel approach to predict MFA and its variability using a generalized diffraction equation, Monte Carlo simulations of diffraction patterns, and Machine Learning models, including Random Forest (RF), k-Nearest Neighbors (kNN), and Artificial Neural Networks (ANNs). Results show that the commonly used Variance Approach generates inaccurate predictions (RMSE=2.61°, MAE=2.12°), while the proposed AI models demonstrate significantly higher accuracy (RF: RMSE=0.72°, MAE=0.29°; kNN: RMSE=0.87°, MAE=0.40°; ANN: RMSE=0.47°, MAE=0.24°). Furthermore, the AI models suggest that empirical cross-section shape data is not required for accurate MFA prediction. This innovative approach, leveraging advanced computational methods and AI, addresses long-standing challenges in MFA prediction using WAXD.</div></div>","PeriodicalId":18349,"journal":{"name":"Measurement","volume":"253 ","pages":"Article 117402"},"PeriodicalIF":5.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence approach to predict microfibril angle of cellulose in wood cell walls by wide-angle X-ray diffraction\",\"authors\":\"Ricardo Baettig ,&nbsp;Ben Ingram\",\"doi\":\"10.1016/j.measurement.2025.117402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the cell wall of cellulose-based fibers such as wood, the microfibril angle (MFA) in the S2 layer plays a crucial role in determining anisotropic properties. Current Wide-angle X-ray diffraction (WAXD) methods for MFA prediction rely on empirical equations, lacking clear predictive capabilities and remaining stagnant for decades. This study presents a novel approach to predict MFA and its variability using a generalized diffraction equation, Monte Carlo simulations of diffraction patterns, and Machine Learning models, including Random Forest (RF), k-Nearest Neighbors (kNN), and Artificial Neural Networks (ANNs). Results show that the commonly used Variance Approach generates inaccurate predictions (RMSE=2.61°, MAE=2.12°), while the proposed AI models demonstrate significantly higher accuracy (RF: RMSE=0.72°, MAE=0.29°; kNN: RMSE=0.87°, MAE=0.40°; ANN: RMSE=0.47°, MAE=0.24°). Furthermore, the AI models suggest that empirical cross-section shape data is not required for accurate MFA prediction. This innovative approach, leveraging advanced computational methods and AI, addresses long-standing challenges in MFA prediction using WAXD.</div></div>\",\"PeriodicalId\":18349,\"journal\":{\"name\":\"Measurement\",\"volume\":\"253 \",\"pages\":\"Article 117402\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263224125007614\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263224125007614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在木材等纤维素基纤维的细胞壁中,S2层的微纤维角(MFA)在决定各向异性特性方面起着至关重要的作用。目前用于MFA预测的广角x射线衍射(WAXD)方法依赖于经验方程,缺乏明确的预测能力,几十年来一直停滞不前。本研究提出了一种预测MFA及其变异性的新方法,该方法使用广义衍射方程、衍射模式的蒙特卡罗模拟和机器学习模型,包括随机森林(RF)、k-近邻(kNN)和人工神经网络(ann)。结果表明,常用的方差方法产生了不准确的预测(RMSE=2.61°,MAE=2.12°),而提出的人工智能模型具有更高的准确性(RF: RMSE=0.72°,MAE=0.29°;kNN: RMSE=0.87°,MAE=0.40°;Ann: rmse =0.47°,mae =0.24°)。此外,人工智能模型表明,准确的MFA预测不需要经验截面形状数据。这种创新的方法利用先进的计算方法和人工智能,解决了使用WAXD进行MFA预测的长期挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial intelligence approach to predict microfibril angle of cellulose in wood cell walls by wide-angle X-ray diffraction

Artificial intelligence approach to predict microfibril angle of cellulose in wood cell walls by wide-angle X-ray diffraction
In the cell wall of cellulose-based fibers such as wood, the microfibril angle (MFA) in the S2 layer plays a crucial role in determining anisotropic properties. Current Wide-angle X-ray diffraction (WAXD) methods for MFA prediction rely on empirical equations, lacking clear predictive capabilities and remaining stagnant for decades. This study presents a novel approach to predict MFA and its variability using a generalized diffraction equation, Monte Carlo simulations of diffraction patterns, and Machine Learning models, including Random Forest (RF), k-Nearest Neighbors (kNN), and Artificial Neural Networks (ANNs). Results show that the commonly used Variance Approach generates inaccurate predictions (RMSE=2.61°, MAE=2.12°), while the proposed AI models demonstrate significantly higher accuracy (RF: RMSE=0.72°, MAE=0.29°; kNN: RMSE=0.87°, MAE=0.40°; ANN: RMSE=0.47°, MAE=0.24°). Furthermore, the AI models suggest that empirical cross-section shape data is not required for accurate MFA prediction. This innovative approach, leveraging advanced computational methods and AI, addresses long-standing challenges in MFA prediction using WAXD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement
Measurement 工程技术-工程:综合
CiteScore
10.20
自引率
12.50%
发文量
1589
审稿时长
12.1 months
期刊介绍: Contributions are invited on novel achievements in all fields of measurement and instrumentation science and technology. Authors are encouraged to submit novel material, whose ultimate goal is an advancement in the state of the art of: measurement and metrology fundamentals, sensors, measurement instruments, measurement and estimation techniques, measurement data processing and fusion algorithms, evaluation procedures and methodologies for plants and industrial processes, performance analysis of systems, processes and algorithms, mathematical models for measurement-oriented purposes, distributed measurement systems in a connected world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信