Xiaohua Xu , Lilan Wen , Lei Zhao , Xiaotong Li , Xiaojie Jia , Shiyu Qu , Guanghong Wang , Changtao Peng , Ke Xin , Jihong Xiao , Su Zhou , Daoren Gong , Wenjing Wang
{"title":"低-高梯度掺杂对高效硅异质结太阳能电池氢化纳米晶硅后发射极的改进","authors":"Xiaohua Xu , Lilan Wen , Lei Zhao , Xiaotong Li , Xiaojie Jia , Shiyu Qu , Guanghong Wang , Changtao Peng , Ke Xin , Jihong Xiao , Su Zhou , Daoren Gong , Wenjing Wang","doi":"10.1016/j.mssp.2025.109616","DOIUrl":null,"url":null,"abstract":"<div><div>A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p<sub>1</sub>) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p<sub>2</sub>) with high boron doping. The p<sub>1</sub> layer contributes to improve the short-circuit current density (<em>J</em><sub>SC</sub>) of the solar cell due to its easily obtained high crystallinity (<em>χ</em><sub>C</sub>). The p<sub>2</sub> layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (<em>V</em><sub>OC</sub>) by improving its contact performance via the high doping, facilitated by the appropriate p<sub>1</sub> layer. Based on adjusting the doping and the thickness combination of the p<sub>1</sub> and p<sub>2</sub> layers, combining with the interface modification on both sides of the p<sub>1</sub>/p<sub>2</sub> stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"195 ","pages":"Article 109616"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of hydrogenated nanocrystalline silicon rear emitter with low-high gradient doping for efficient silicon heterojunction solar cell\",\"authors\":\"Xiaohua Xu , Lilan Wen , Lei Zhao , Xiaotong Li , Xiaojie Jia , Shiyu Qu , Guanghong Wang , Changtao Peng , Ke Xin , Jihong Xiao , Su Zhou , Daoren Gong , Wenjing Wang\",\"doi\":\"10.1016/j.mssp.2025.109616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p<sub>1</sub>) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p<sub>2</sub>) with high boron doping. The p<sub>1</sub> layer contributes to improve the short-circuit current density (<em>J</em><sub>SC</sub>) of the solar cell due to its easily obtained high crystallinity (<em>χ</em><sub>C</sub>). The p<sub>2</sub> layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (<em>V</em><sub>OC</sub>) by improving its contact performance via the high doping, facilitated by the appropriate p<sub>1</sub> layer. Based on adjusting the doping and the thickness combination of the p<sub>1</sub> and p<sub>2</sub> layers, combining with the interface modification on both sides of the p<sub>1</sub>/p<sub>2</sub> stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"195 \",\"pages\":\"Article 109616\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125003531\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
通过在n型晶体硅(c-Si(n))衬底上沉积第一层低硼掺杂的nc-Si:H(p)层(p1),再沉积第二层高硼掺杂的nc-Si:H(p)层(p2),制备了一种低高梯度掺杂的掺硼氢化纳米晶硅(nc-Si:H(p))双层掺杂堆栈,以修饰硅异质结(SHJ)太阳能电池的后发射极。p1层由于易于获得高结晶度,有助于提高太阳能电池的短路电流密度(JSC) (χC)。p2层在适当的p1层的促进下,通过高掺杂改善其接触性能,可以有效地提高太阳能电池的填充因子(FF)和开路电压(VOC)。在调整掺杂和p1层和p2层厚度组合的基础上,结合p1/p2层两侧的界面修饰,在商用大面积166 mm × 166 mm (M6) c-Si衬底上成功制备了效率为25.36%的SHJ太阳能电池。
Improvement of hydrogenated nanocrystalline silicon rear emitter with low-high gradient doping for efficient silicon heterojunction solar cell
A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p1) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p2) with high boron doping. The p1 layer contributes to improve the short-circuit current density (JSC) of the solar cell due to its easily obtained high crystallinity (χC). The p2 layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (VOC) by improving its contact performance via the high doping, facilitated by the appropriate p1 layer. Based on adjusting the doping and the thickness combination of the p1 and p2 layers, combining with the interface modification on both sides of the p1/p2 stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.
期刊介绍:
Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy.
Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications.
Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.