低-高梯度掺杂对高效硅异质结太阳能电池氢化纳米晶硅后发射极的改进

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xiaohua Xu , Lilan Wen , Lei Zhao , Xiaotong Li , Xiaojie Jia , Shiyu Qu , Guanghong Wang , Changtao Peng , Ke Xin , Jihong Xiao , Su Zhou , Daoren Gong , Wenjing Wang
{"title":"低-高梯度掺杂对高效硅异质结太阳能电池氢化纳米晶硅后发射极的改进","authors":"Xiaohua Xu ,&nbsp;Lilan Wen ,&nbsp;Lei Zhao ,&nbsp;Xiaotong Li ,&nbsp;Xiaojie Jia ,&nbsp;Shiyu Qu ,&nbsp;Guanghong Wang ,&nbsp;Changtao Peng ,&nbsp;Ke Xin ,&nbsp;Jihong Xiao ,&nbsp;Su Zhou ,&nbsp;Daoren Gong ,&nbsp;Wenjing Wang","doi":"10.1016/j.mssp.2025.109616","DOIUrl":null,"url":null,"abstract":"<div><div>A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p<sub>1</sub>) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p<sub>2</sub>) with high boron doping. The p<sub>1</sub> layer contributes to improve the short-circuit current density (<em>J</em><sub>SC</sub>) of the solar cell due to its easily obtained high crystallinity (<em>χ</em><sub>C</sub>). The p<sub>2</sub> layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (<em>V</em><sub>OC</sub>) by improving its contact performance via the high doping, facilitated by the appropriate p<sub>1</sub> layer. Based on adjusting the doping and the thickness combination of the p<sub>1</sub> and p<sub>2</sub> layers, combining with the interface modification on both sides of the p<sub>1</sub>/p<sub>2</sub> stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"195 ","pages":"Article 109616"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improvement of hydrogenated nanocrystalline silicon rear emitter with low-high gradient doping for efficient silicon heterojunction solar cell\",\"authors\":\"Xiaohua Xu ,&nbsp;Lilan Wen ,&nbsp;Lei Zhao ,&nbsp;Xiaotong Li ,&nbsp;Xiaojie Jia ,&nbsp;Shiyu Qu ,&nbsp;Guanghong Wang ,&nbsp;Changtao Peng ,&nbsp;Ke Xin ,&nbsp;Jihong Xiao ,&nbsp;Su Zhou ,&nbsp;Daoren Gong ,&nbsp;Wenjing Wang\",\"doi\":\"10.1016/j.mssp.2025.109616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p<sub>1</sub>) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p<sub>2</sub>) with high boron doping. The p<sub>1</sub> layer contributes to improve the short-circuit current density (<em>J</em><sub>SC</sub>) of the solar cell due to its easily obtained high crystallinity (<em>χ</em><sub>C</sub>). The p<sub>2</sub> layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (<em>V</em><sub>OC</sub>) by improving its contact performance via the high doping, facilitated by the appropriate p<sub>1</sub> layer. Based on adjusting the doping and the thickness combination of the p<sub>1</sub> and p<sub>2</sub> layers, combining with the interface modification on both sides of the p<sub>1</sub>/p<sub>2</sub> stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"195 \",\"pages\":\"Article 109616\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125003531\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003531","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

通过在n型晶体硅(c-Si(n))衬底上沉积第一层低硼掺杂的nc-Si:H(p)层(p1),再沉积第二层高硼掺杂的nc-Si:H(p)层(p2),制备了一种低高梯度掺杂的掺硼氢化纳米晶硅(nc-Si:H(p))双层掺杂堆栈,以修饰硅异质结(SHJ)太阳能电池的后发射极。p1层由于易于获得高结晶度,有助于提高太阳能电池的短路电流密度(JSC) (χC)。p2层在适当的p1层的促进下,通过高掺杂改善其接触性能,可以有效地提高太阳能电池的填充因子(FF)和开路电压(VOC)。在调整掺杂和p1层和p2层厚度组合的基础上,结合p1/p2层两侧的界面修饰,在商用大面积166 mm × 166 mm (M6) c-Si衬底上成功制备了效率为25.36%的SHJ太阳能电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improvement of hydrogenated nanocrystalline silicon rear emitter with low-high gradient doping for efficient silicon heterojunction solar cell
A low-high gradient doping bilayer stack of boron-doped hydrogenated nanocrystalline silicon (nc-Si:H(p)) was developed to modify the rear emitter for the silicon heterojunction (SHJ) solar cell on n-type crystalline silicon (c-Si(n)) substrate via depositing the first nc-Si:H(p) layer (p1) with low boron doping, followed by depositing the second nc-Si:H(p) layer (p2) with high boron doping. The p1 layer contributes to improve the short-circuit current density (JSC) of the solar cell due to its easily obtained high crystallinity (χC). The p2 layer can effectively enhance the solar cell fill factor (FF) and open-circuit voltage (VOC) by improving its contact performance via the high doping, facilitated by the appropriate p1 layer. Based on adjusting the doping and the thickness combination of the p1 and p2 layers, combining with the interface modification on both sides of the p1/p2 stack, a 25.36 % efficient SHJ solar cell was successfully fabricated on the commercial large-area 166 mm × 166 mm (M6) c-Si substrate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信