Rong Zhang , Jinhua Sheng , Qiao Zhang , Junmei Wang , Binbing Wang
{"title":"基于多模态融合的深度学习治疗阿尔茨海默病的研究进展","authors":"Rong Zhang , Jinhua Sheng , Qiao Zhang , Junmei Wang , Binbing Wang","doi":"10.1016/j.neuroscience.2025.04.035","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer’s Disease (AD) as one of the most prevalent neurodegenerative disorders worldwide, characterized by significant memory and cognitive decline in its later stages, severely impacting daily lives. Consequently, early diagnosis and accurate assessment are crucial for delaying disease progression. In recent years, multimodal imaging has gained widespread adoption in AD diagnosis and research, particularly the combined use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The complementarity of these modalities in structural and metabolic information offers a unique advantage for comprehensive disease understanding and precise diagnosis. With the rapid advancement of deep learning techniques, efficient fusion of MRI and PET multimodal data has emerged as a prominent research focus. This review systematically surveys the latest advancements in deep learning-based multimodal fusion of MRI and PET images for AD research, with a particular focus on studies published in the past five years (2021–2025). It first introduces the main sources of AD-related data, along with data preprocessing and feature extraction methods. Then, it summarizes performance metrics and multimodal fusion techniques. Next, it explores the application of various deep learning models and their variants in multimodal fusion tasks. Finally, it analyzes the key challenges currently faced in the field, including data scarcity and imbalance, inter-institutional data heterogeneity, etc., and discusses potential solutions and future research directions. This review aims to provide systematic guidance for researchers in the field of MRI and PET multimodal fusion, with the ultimate goal of advancing the development of early AD diagnosis and intervention strategies.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"576 ","pages":"Pages 80-95"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review of multimodal fusion–based deep learning for Alzheimer’s disease\",\"authors\":\"Rong Zhang , Jinhua Sheng , Qiao Zhang , Junmei Wang , Binbing Wang\",\"doi\":\"10.1016/j.neuroscience.2025.04.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer’s Disease (AD) as one of the most prevalent neurodegenerative disorders worldwide, characterized by significant memory and cognitive decline in its later stages, severely impacting daily lives. Consequently, early diagnosis and accurate assessment are crucial for delaying disease progression. In recent years, multimodal imaging has gained widespread adoption in AD diagnosis and research, particularly the combined use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The complementarity of these modalities in structural and metabolic information offers a unique advantage for comprehensive disease understanding and precise diagnosis. With the rapid advancement of deep learning techniques, efficient fusion of MRI and PET multimodal data has emerged as a prominent research focus. This review systematically surveys the latest advancements in deep learning-based multimodal fusion of MRI and PET images for AD research, with a particular focus on studies published in the past five years (2021–2025). It first introduces the main sources of AD-related data, along with data preprocessing and feature extraction methods. Then, it summarizes performance metrics and multimodal fusion techniques. Next, it explores the application of various deep learning models and their variants in multimodal fusion tasks. Finally, it analyzes the key challenges currently faced in the field, including data scarcity and imbalance, inter-institutional data heterogeneity, etc., and discusses potential solutions and future research directions. This review aims to provide systematic guidance for researchers in the field of MRI and PET multimodal fusion, with the ultimate goal of advancing the development of early AD diagnosis and intervention strategies.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"576 \",\"pages\":\"Pages 80-95\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452225003288\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225003288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
A review of multimodal fusion–based deep learning for Alzheimer’s disease
Alzheimer’s Disease (AD) as one of the most prevalent neurodegenerative disorders worldwide, characterized by significant memory and cognitive decline in its later stages, severely impacting daily lives. Consequently, early diagnosis and accurate assessment are crucial for delaying disease progression. In recent years, multimodal imaging has gained widespread adoption in AD diagnosis and research, particularly the combined use of Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). The complementarity of these modalities in structural and metabolic information offers a unique advantage for comprehensive disease understanding and precise diagnosis. With the rapid advancement of deep learning techniques, efficient fusion of MRI and PET multimodal data has emerged as a prominent research focus. This review systematically surveys the latest advancements in deep learning-based multimodal fusion of MRI and PET images for AD research, with a particular focus on studies published in the past five years (2021–2025). It first introduces the main sources of AD-related data, along with data preprocessing and feature extraction methods. Then, it summarizes performance metrics and multimodal fusion techniques. Next, it explores the application of various deep learning models and their variants in multimodal fusion tasks. Finally, it analyzes the key challenges currently faced in the field, including data scarcity and imbalance, inter-institutional data heterogeneity, etc., and discusses potential solutions and future research directions. This review aims to provide systematic guidance for researchers in the field of MRI and PET multimodal fusion, with the ultimate goal of advancing the development of early AD diagnosis and intervention strategies.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.