Hussian Maanaki, Letice Bussiere, Aleksandr Smirnov, Xiuxia Du, Yu Sun, Thomas A. Arcury, Phillip Summers, Landon Butler, Carey Pope, Anna Jensen, Gregory D. Kearney, Joshua T. Butcher, Jun Wang
{"title":"一个集成的纳米传感器/智能手机平台,用于人体暴露于农药的即时生物监测","authors":"Hussian Maanaki, Letice Bussiere, Aleksandr Smirnov, Xiuxia Du, Yu Sun, Thomas A. Arcury, Phillip Summers, Landon Butler, Carey Pope, Anna Jensen, Gregory D. Kearney, Joshua T. Butcher, Jun Wang","doi":"10.1021/acs.analchem.4c06421","DOIUrl":null,"url":null,"abstract":"Organophosphorus (OP) compounds are neurotoxins that are among the most widely used pesticides in agriculture in the United States. In this application, a new integrated point-of-care smartphone/resistive nanosensor device is developed for onsite rapid and sensitive detection of exposure to OP pesticides from a drop of finger-stick blood among a sample of farmworkers. The nanosensor leverages the transport properties of a multiwalled carbon nanotube/polyaniline nanofiber (MWCNT/PAnNF) nanocomposite film on a gold interdigitated electrode and acetylcholinesterase/butyrylcholinesterase (AChE/BChE) hydrolysis of their respective substrates generating protons doping PAnNFs, thereby increasing the conductance of the film. As such, a conductance change can be used to quantify cholinesterase activity, enabling assessment of acute/chronic OP poisoning. Additionally, a mobile app was developed for the nanosensor to process, display, track, and share results. Under optimal conditions, the nanosensor demonstrated exceptional sensitivity with the detection limits of 0.11 U/mL for AChE and 0.093 U/mL for BChE, physiologically relevant dynamic ranges of 2.0–18.0 U/mL for AChE and 0.5–5.0 U/mL for BChE in whole blood, and high reproducibility with the relative standard variation of <4%. The nanosensor was further validated with widely used radiometric and Ellman’s methods, utilizing both <i>in vitro</i> pesticide-spiked blood samples and blood samples from 22 farmworkers. The results between this nanosensor and those two methods demonstrated a strong agreement. This platform provides a new avenue for the simple, rapid, and sensitive biomonitoring of OP pesticide exposure.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"9 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Integrated Nanosensor/Smartphone Platform for Point-of-Care Biomonitoring of Human Exposure to Pesticides\",\"authors\":\"Hussian Maanaki, Letice Bussiere, Aleksandr Smirnov, Xiuxia Du, Yu Sun, Thomas A. Arcury, Phillip Summers, Landon Butler, Carey Pope, Anna Jensen, Gregory D. Kearney, Joshua T. Butcher, Jun Wang\",\"doi\":\"10.1021/acs.analchem.4c06421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organophosphorus (OP) compounds are neurotoxins that are among the most widely used pesticides in agriculture in the United States. In this application, a new integrated point-of-care smartphone/resistive nanosensor device is developed for onsite rapid and sensitive detection of exposure to OP pesticides from a drop of finger-stick blood among a sample of farmworkers. The nanosensor leverages the transport properties of a multiwalled carbon nanotube/polyaniline nanofiber (MWCNT/PAnNF) nanocomposite film on a gold interdigitated electrode and acetylcholinesterase/butyrylcholinesterase (AChE/BChE) hydrolysis of their respective substrates generating protons doping PAnNFs, thereby increasing the conductance of the film. As such, a conductance change can be used to quantify cholinesterase activity, enabling assessment of acute/chronic OP poisoning. Additionally, a mobile app was developed for the nanosensor to process, display, track, and share results. Under optimal conditions, the nanosensor demonstrated exceptional sensitivity with the detection limits of 0.11 U/mL for AChE and 0.093 U/mL for BChE, physiologically relevant dynamic ranges of 2.0–18.0 U/mL for AChE and 0.5–5.0 U/mL for BChE in whole blood, and high reproducibility with the relative standard variation of <4%. The nanosensor was further validated with widely used radiometric and Ellman’s methods, utilizing both <i>in vitro</i> pesticide-spiked blood samples and blood samples from 22 farmworkers. The results between this nanosensor and those two methods demonstrated a strong agreement. This platform provides a new avenue for the simple, rapid, and sensitive biomonitoring of OP pesticide exposure.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06421\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06421","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
An Integrated Nanosensor/Smartphone Platform for Point-of-Care Biomonitoring of Human Exposure to Pesticides
Organophosphorus (OP) compounds are neurotoxins that are among the most widely used pesticides in agriculture in the United States. In this application, a new integrated point-of-care smartphone/resistive nanosensor device is developed for onsite rapid and sensitive detection of exposure to OP pesticides from a drop of finger-stick blood among a sample of farmworkers. The nanosensor leverages the transport properties of a multiwalled carbon nanotube/polyaniline nanofiber (MWCNT/PAnNF) nanocomposite film on a gold interdigitated electrode and acetylcholinesterase/butyrylcholinesterase (AChE/BChE) hydrolysis of their respective substrates generating protons doping PAnNFs, thereby increasing the conductance of the film. As such, a conductance change can be used to quantify cholinesterase activity, enabling assessment of acute/chronic OP poisoning. Additionally, a mobile app was developed for the nanosensor to process, display, track, and share results. Under optimal conditions, the nanosensor demonstrated exceptional sensitivity with the detection limits of 0.11 U/mL for AChE and 0.093 U/mL for BChE, physiologically relevant dynamic ranges of 2.0–18.0 U/mL for AChE and 0.5–5.0 U/mL for BChE in whole blood, and high reproducibility with the relative standard variation of <4%. The nanosensor was further validated with widely used radiometric and Ellman’s methods, utilizing both in vitro pesticide-spiked blood samples and blood samples from 22 farmworkers. The results between this nanosensor and those two methods demonstrated a strong agreement. This platform provides a new avenue for the simple, rapid, and sensitive biomonitoring of OP pesticide exposure.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.