Dy3+掺杂CaB4O7荧光粉的合成、结构表征及光致发光性能:Li+和K+共掺杂的影响

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Abeer S. Altowyan , U.H. Kaynar , H. Aydin , Jabir Hakami , M.B. Coban , K. Cikrikci , M. Ayvacikli , N. Can
{"title":"Dy3+掺杂CaB4O7荧光粉的合成、结构表征及光致发光性能:Li+和K+共掺杂的影响","authors":"Abeer S. Altowyan ,&nbsp;U.H. Kaynar ,&nbsp;H. Aydin ,&nbsp;Jabir Hakami ,&nbsp;M.B. Coban ,&nbsp;K. Cikrikci ,&nbsp;M. Ayvacikli ,&nbsp;N. Can","doi":"10.1016/j.mssp.2025.109593","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the structural and photoluminescence properties of Dy<sup>3+</sup>-doped CaB<sub>4</sub>O<sub>7</sub> phosphors co-doped with Li<sup>+</sup> and K<sup>+</sup>, synthesized via the high-temperature solid-state reaction method. X-ray diffraction (XRD) and Rietveld refinement confirmed the successful incorporation of Dy<sup>3+</sup> (substituting for Ca<sup>2+</sup>), Li<sup>+</sup> (interstitial), and K<sup>+</sup> (interstitial) ions within the CaB<sub>4</sub>O<sub>7</sub> lattice at co-doping concentrations of <span><math><mrow><mi>x</mi></mrow></math></span> = 0.02 wt percent (wt%), <span><math><mrow><mi>y</mi></mrow></math></span> = 0.05 wt%, and <span><math><mrow><mi>z</mi></mrow></math></span> = 0.10 wt%, respectively. This co-doping induced localized lattice distortions while maintaining the overall crystal symmetry. Fourier-transform infrared (FTIR) and Raman spectroscopy reveal modifications in borate network vibrational modes, indicating the stabilizing effects of Li<sup>+</sup> and K<sup>+</sup> co-doping. Photoluminescence (PL) analysis demonstrates an unusually intense red emission (<sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>11/2</sub>), deviating from typical Dy<sup>3+</sup> emission trends, which is attributed to local symmetry distortions and enhanced electric dipole transitions. Judd-Ofelt analysis confirms a high Ω<sub>6</sub> parameter (5.42 × 10<sup>−20</sup> cm<sup>2</sup>), further supporting this enhancement. Li<sup>+</sup> co-doping significantly enhances PL, increasing yellow emission by a factor of 7.64 and red emission by 4.03. Similarly, K<sup>+</sup> co-doping influences the crystal field environment, leading to a 6.36-fold boost in yellow luminescence and a 3.60-fold increase in red luminescence. Temperature-dependent PL studies reveal an anti-thermal quenching effect, with red emission intensity increasing up to 550 K, indicating potential applications in high-temperature environments. The findings demonstrate that Li<sup>+</sup> and K<sup>+</sup> co-doping modulates the emission characteristics of Dy<sup>3+</sup>-doped CaB<sub>4</sub>O<sub>7</sub>, reinforcing its applicability in solid-state lighting and optoelectronic devices.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"195 ","pages":"Article 109593"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis, structural characterization, and photoluminescence properties of Dy3+-Doped CaB4O7 Phosphors: Influence of Li+ and K+ Co-doping\",\"authors\":\"Abeer S. Altowyan ,&nbsp;U.H. Kaynar ,&nbsp;H. Aydin ,&nbsp;Jabir Hakami ,&nbsp;M.B. Coban ,&nbsp;K. Cikrikci ,&nbsp;M. Ayvacikli ,&nbsp;N. Can\",\"doi\":\"10.1016/j.mssp.2025.109593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study examines the structural and photoluminescence properties of Dy<sup>3+</sup>-doped CaB<sub>4</sub>O<sub>7</sub> phosphors co-doped with Li<sup>+</sup> and K<sup>+</sup>, synthesized via the high-temperature solid-state reaction method. X-ray diffraction (XRD) and Rietveld refinement confirmed the successful incorporation of Dy<sup>3+</sup> (substituting for Ca<sup>2+</sup>), Li<sup>+</sup> (interstitial), and K<sup>+</sup> (interstitial) ions within the CaB<sub>4</sub>O<sub>7</sub> lattice at co-doping concentrations of <span><math><mrow><mi>x</mi></mrow></math></span> = 0.02 wt percent (wt%), <span><math><mrow><mi>y</mi></mrow></math></span> = 0.05 wt%, and <span><math><mrow><mi>z</mi></mrow></math></span> = 0.10 wt%, respectively. This co-doping induced localized lattice distortions while maintaining the overall crystal symmetry. Fourier-transform infrared (FTIR) and Raman spectroscopy reveal modifications in borate network vibrational modes, indicating the stabilizing effects of Li<sup>+</sup> and K<sup>+</sup> co-doping. Photoluminescence (PL) analysis demonstrates an unusually intense red emission (<sup>4</sup>F<sub>9/2</sub> → <sup>6</sup>H<sub>11/2</sub>), deviating from typical Dy<sup>3+</sup> emission trends, which is attributed to local symmetry distortions and enhanced electric dipole transitions. Judd-Ofelt analysis confirms a high Ω<sub>6</sub> parameter (5.42 × 10<sup>−20</sup> cm<sup>2</sup>), further supporting this enhancement. Li<sup>+</sup> co-doping significantly enhances PL, increasing yellow emission by a factor of 7.64 and red emission by 4.03. Similarly, K<sup>+</sup> co-doping influences the crystal field environment, leading to a 6.36-fold boost in yellow luminescence and a 3.60-fold increase in red luminescence. Temperature-dependent PL studies reveal an anti-thermal quenching effect, with red emission intensity increasing up to 550 K, indicating potential applications in high-temperature environments. The findings demonstrate that Li<sup>+</sup> and K<sup>+</sup> co-doping modulates the emission characteristics of Dy<sup>3+</sup>-doped CaB<sub>4</sub>O<sub>7</sub>, reinforcing its applicability in solid-state lighting and optoelectronic devices.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"195 \",\"pages\":\"Article 109593\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125003300\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003300","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究考察了高温固相反应法制备的Li+和K+共掺杂的Dy3+掺杂CaB4O7荧光粉的结构和光致发光性能。x射线衍射(XRD)和Rietveld细化证实,在共掺杂浓度分别为x = 0.02 wt% (wt%)、y = 0.05 wt%和z = 0.10 wt%时,Dy3+(取代Ca2+)、Li+(间隙)和K+(间隙)离子成功掺入CaB4O7晶格内。这种共掺杂在保持整体晶体对称性的同时,诱导了局部晶格畸变。傅里叶变换红外光谱(FTIR)和拉曼光谱显示硼酸盐网络振动模式的改变,表明Li+和K+共掺杂具有稳定作用。光致发光(PL)分析显示出异常强烈的红色发射(4F9/2→6H11/2),偏离了典型的Dy3+发射趋势,这归因于局部对称畸变和增强的电偶极子跃迁。Judd-Ofelt分析证实了高Ω6参数(5.42 × 10−20 cm2),进一步支持了这种增强。Li+共掺杂显著提高了PL,使黄色发射增加了7.64倍,红色发射增加了4.03倍。同样,K+共掺杂影响晶体场环境,导致黄色发光增加6.36倍,红色发光增加3.60倍。温度相关的PL研究揭示了一种抗热猝灭效应,红色发射强度增加到550 K,表明在高温环境中的潜在应用。研究结果表明,Li+和K+共掺杂调节了Dy3+掺杂CaB4O7的发射特性,增强了其在固态照明和光电子器件中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis, structural characterization, and photoluminescence properties of Dy3+-Doped CaB4O7 Phosphors: Influence of Li+ and K+ Co-doping
This study examines the structural and photoluminescence properties of Dy3+-doped CaB4O7 phosphors co-doped with Li+ and K+, synthesized via the high-temperature solid-state reaction method. X-ray diffraction (XRD) and Rietveld refinement confirmed the successful incorporation of Dy3+ (substituting for Ca2+), Li+ (interstitial), and K+ (interstitial) ions within the CaB4O7 lattice at co-doping concentrations of x = 0.02 wt percent (wt%), y = 0.05 wt%, and z = 0.10 wt%, respectively. This co-doping induced localized lattice distortions while maintaining the overall crystal symmetry. Fourier-transform infrared (FTIR) and Raman spectroscopy reveal modifications in borate network vibrational modes, indicating the stabilizing effects of Li+ and K+ co-doping. Photoluminescence (PL) analysis demonstrates an unusually intense red emission (4F9/2 → 6H11/2), deviating from typical Dy3+ emission trends, which is attributed to local symmetry distortions and enhanced electric dipole transitions. Judd-Ofelt analysis confirms a high Ω6 parameter (5.42 × 10−20 cm2), further supporting this enhancement. Li+ co-doping significantly enhances PL, increasing yellow emission by a factor of 7.64 and red emission by 4.03. Similarly, K+ co-doping influences the crystal field environment, leading to a 6.36-fold boost in yellow luminescence and a 3.60-fold increase in red luminescence. Temperature-dependent PL studies reveal an anti-thermal quenching effect, with red emission intensity increasing up to 550 K, indicating potential applications in high-temperature environments. The findings demonstrate that Li+ and K+ co-doping modulates the emission characteristics of Dy3+-doped CaB4O7, reinforcing its applicability in solid-state lighting and optoelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信