具有增强光伏性能的噻吩基相容非富勒烯受体的设计

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Fatiqa Zafar , Asifa Rani , Rimsha Irshad , Fareeha Bashir , Waseeq-ul-Islam Zafar , Riaz Hussain , Javed Iqbal , Muhammad Adnan
{"title":"具有增强光伏性能的噻吩基相容非富勒烯受体的设计","authors":"Fatiqa Zafar ,&nbsp;Asifa Rani ,&nbsp;Rimsha Irshad ,&nbsp;Fareeha Bashir ,&nbsp;Waseeq-ul-Islam Zafar ,&nbsp;Riaz Hussain ,&nbsp;Javed Iqbal ,&nbsp;Muhammad Adnan","doi":"10.1016/j.mssp.2025.109604","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, five small novel acceptor molecules were theoretically designed to improve the performance of organic solar cells by modifying the end-group of the reference (R) molecule. The optoelectronic properties of R and designed molecules (L1–L5) were analyzed using the MPW1PW91 functional with the 6-31G (d,p) basis set, while solvent-state calculations were performed with time-dependent self-consistent field (TD-SCF) simulations. Compared to the R molecule, the modified molecules exhibited a bathochromic shift in the absorption maxima (<span><math><mrow><msub><mi>λ</mi><mi>max</mi></msub></mrow></math></span>), lower excitation energy (<span><math><mrow><msub><mi>E</mi><mi>x</mi></msub></mrow></math></span>), and a decreased HOMO-LUMO gap (<span><math><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>a</mi><mi>p</mi></mrow></msub></mrow></math></span>). Moreover, in evaluated environment (chloroform), the L3 molecule displayed the lowest <span><math><mrow><msub><mi>E</mi><mi>x</mi></msub></mrow></math></span> (2.22 eV), highest <span><math><mrow><msub><mi>λ</mi><mi>max</mi></msub></mrow></math></span> (558 nm), and smallest <span><math><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>a</mi><mi>p</mi></mrow></msub></mrow></math></span> (2.38 eV). The open-circuit voltage (<span><math><mrow><msub><mi>V</mi><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span>) for all small molecule acceptors was determined by pairing them with the PTB7-Th donor. Here, L3 exhibited the best values for fill factor (FF) (0.9175) and <span><math><mrow><msub><mi>V</mi><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span> (1.58 eV). Outcomes of present study elucidated that the modified molecules may be used in the production of OSCs with enhanced photovoltaic characteristics.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"195 ","pages":"Article 109604"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing of bithiophene based compatible non-fullerene acceptors with enhanced photovoltaic properties\",\"authors\":\"Fatiqa Zafar ,&nbsp;Asifa Rani ,&nbsp;Rimsha Irshad ,&nbsp;Fareeha Bashir ,&nbsp;Waseeq-ul-Islam Zafar ,&nbsp;Riaz Hussain ,&nbsp;Javed Iqbal ,&nbsp;Muhammad Adnan\",\"doi\":\"10.1016/j.mssp.2025.109604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, five small novel acceptor molecules were theoretically designed to improve the performance of organic solar cells by modifying the end-group of the reference (R) molecule. The optoelectronic properties of R and designed molecules (L1–L5) were analyzed using the MPW1PW91 functional with the 6-31G (d,p) basis set, while solvent-state calculations were performed with time-dependent self-consistent field (TD-SCF) simulations. Compared to the R molecule, the modified molecules exhibited a bathochromic shift in the absorption maxima (<span><math><mrow><msub><mi>λ</mi><mi>max</mi></msub></mrow></math></span>), lower excitation energy (<span><math><mrow><msub><mi>E</mi><mi>x</mi></msub></mrow></math></span>), and a decreased HOMO-LUMO gap (<span><math><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>a</mi><mi>p</mi></mrow></msub></mrow></math></span>). Moreover, in evaluated environment (chloroform), the L3 molecule displayed the lowest <span><math><mrow><msub><mi>E</mi><mi>x</mi></msub></mrow></math></span> (2.22 eV), highest <span><math><mrow><msub><mi>λ</mi><mi>max</mi></msub></mrow></math></span> (558 nm), and smallest <span><math><mrow><msub><mi>E</mi><mrow><mi>g</mi><mi>a</mi><mi>p</mi></mrow></msub></mrow></math></span> (2.38 eV). The open-circuit voltage (<span><math><mrow><msub><mi>V</mi><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span>) for all small molecule acceptors was determined by pairing them with the PTB7-Th donor. Here, L3 exhibited the best values for fill factor (FF) (0.9175) and <span><math><mrow><msub><mi>V</mi><mrow><mi>o</mi><mi>c</mi></mrow></msub></mrow></math></span> (1.58 eV). Outcomes of present study elucidated that the modified molecules may be used in the production of OSCs with enhanced photovoltaic characteristics.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"195 \",\"pages\":\"Article 109604\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125003415\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125003415","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,理论上设计了五种新的小受体分子,通过修饰参考分子(R)的端基来提高有机太阳能电池的性能。利用MPW1PW91泛函(6-31G (d,p)基)分析了R和设计分子(L1-L5)的光电性质,并利用时间相关自一致场(TD-SCF)模拟进行了溶剂态计算。与R分子相比,修饰后的分子的吸收最大值(λmax)发生了色移,激发能(Ex)降低,HOMO-LUMO间隙(Egap)减小。在评价环境(氯仿)中,L3分子的Ex值最低(2.22 eV), λmax值最高(558 nm), Egap值最小(2.38 eV)。所有小分子受体的开路电压(Voc)是通过与PTB7-Th供体配对来确定的。其中,L3的填充系数(FF)为0.9175,Voc为1.58 eV。本研究结果表明,该修饰分子可用于生产具有增强光伏特性的OSCs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing of bithiophene based compatible non-fullerene acceptors with enhanced photovoltaic properties
In the present study, five small novel acceptor molecules were theoretically designed to improve the performance of organic solar cells by modifying the end-group of the reference (R) molecule. The optoelectronic properties of R and designed molecules (L1–L5) were analyzed using the MPW1PW91 functional with the 6-31G (d,p) basis set, while solvent-state calculations were performed with time-dependent self-consistent field (TD-SCF) simulations. Compared to the R molecule, the modified molecules exhibited a bathochromic shift in the absorption maxima (λmax), lower excitation energy (Ex), and a decreased HOMO-LUMO gap (Egap). Moreover, in evaluated environment (chloroform), the L3 molecule displayed the lowest Ex (2.22 eV), highest λmax (558 nm), and smallest Egap (2.38 eV). The open-circuit voltage (Voc) for all small molecule acceptors was determined by pairing them with the PTB7-Th donor. Here, L3 exhibited the best values for fill factor (FF) (0.9175) and Voc (1.58 eV). Outcomes of present study elucidated that the modified molecules may be used in the production of OSCs with enhanced photovoltaic characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信