{"title":"RH-RPA:一种基于RNase HII和重组酶聚合酶扩增的快速、高灵敏度核酸检测方法","authors":"Yuting Jin, Yangnan Fu, Qingyang Liu, Suhang Li, Yingzhou Zeng, Lijuan Fu, Yongyou Zhang","doi":"10.1021/acs.analchem.4c06578","DOIUrl":null,"url":null,"abstract":"Currently, RPA-exo and RPA-nfo are the primary methods for RPA/RT-RPA probe assays, both of which have been widely applied to the detection of various targets. However, RPA-nfo exhibits lower sensitivity compared with the exo probe method, while RPA-exo lacks the capability for equipment-free visualization inherent to RPA-nfo. Both of the approaches mentioned above limit the broader application of RPA/RT-RPA probe assays. To address those limitations, we have developed a novel recombinase polymerase amplification (RPA) combined with an <i><i>E. coli</i></i> RNase HII assay (RH-RPA). This approach supports both fluorescence signal detection and lateral-flow strip readouts. Due to the high efficiency and specificity of <i><i>E. coli</i></i> RNase HII in recognizing and cleaving targets, this method serves as a rapid and accurate molecular diagnostic platform. Under the fluorescence detection mode, RH-RPA achieves a limit of detection as low as 10 copies per reaction for both DNA and RNA within 20 min. Additionally, the lateral-flow strip mode enables the detection of as few as 5 copies per reaction of nucleic acids within 20 min. In clinical sample analysis, the RT RH-RPA demonstrated 100% accuracy in detecting the influenza A virus, underscoring its reliability in practical diagnostics. These findings highlight the stable specificity, rapid performance, high sensitivity, and cost-effectiveness of the RH-RPA methods, showcasing their potential as promising tools for point-of-care nucleic acid detection.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"15 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RH-RPA: A Rapid and Highly Sensitive Assay for Nucleic Acid Detection Based on RNase HII Combined with Recombinase Polymerase Amplification\",\"authors\":\"Yuting Jin, Yangnan Fu, Qingyang Liu, Suhang Li, Yingzhou Zeng, Lijuan Fu, Yongyou Zhang\",\"doi\":\"10.1021/acs.analchem.4c06578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, RPA-exo and RPA-nfo are the primary methods for RPA/RT-RPA probe assays, both of which have been widely applied to the detection of various targets. However, RPA-nfo exhibits lower sensitivity compared with the exo probe method, while RPA-exo lacks the capability for equipment-free visualization inherent to RPA-nfo. Both of the approaches mentioned above limit the broader application of RPA/RT-RPA probe assays. To address those limitations, we have developed a novel recombinase polymerase amplification (RPA) combined with an <i><i>E. coli</i></i> RNase HII assay (RH-RPA). This approach supports both fluorescence signal detection and lateral-flow strip readouts. Due to the high efficiency and specificity of <i><i>E. coli</i></i> RNase HII in recognizing and cleaving targets, this method serves as a rapid and accurate molecular diagnostic platform. Under the fluorescence detection mode, RH-RPA achieves a limit of detection as low as 10 copies per reaction for both DNA and RNA within 20 min. Additionally, the lateral-flow strip mode enables the detection of as few as 5 copies per reaction of nucleic acids within 20 min. In clinical sample analysis, the RT RH-RPA demonstrated 100% accuracy in detecting the influenza A virus, underscoring its reliability in practical diagnostics. These findings highlight the stable specificity, rapid performance, high sensitivity, and cost-effectiveness of the RH-RPA methods, showcasing their potential as promising tools for point-of-care nucleic acid detection.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c06578\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06578","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
RH-RPA: A Rapid and Highly Sensitive Assay for Nucleic Acid Detection Based on RNase HII Combined with Recombinase Polymerase Amplification
Currently, RPA-exo and RPA-nfo are the primary methods for RPA/RT-RPA probe assays, both of which have been widely applied to the detection of various targets. However, RPA-nfo exhibits lower sensitivity compared with the exo probe method, while RPA-exo lacks the capability for equipment-free visualization inherent to RPA-nfo. Both of the approaches mentioned above limit the broader application of RPA/RT-RPA probe assays. To address those limitations, we have developed a novel recombinase polymerase amplification (RPA) combined with an E. coli RNase HII assay (RH-RPA). This approach supports both fluorescence signal detection and lateral-flow strip readouts. Due to the high efficiency and specificity of E. coli RNase HII in recognizing and cleaving targets, this method serves as a rapid and accurate molecular diagnostic platform. Under the fluorescence detection mode, RH-RPA achieves a limit of detection as low as 10 copies per reaction for both DNA and RNA within 20 min. Additionally, the lateral-flow strip mode enables the detection of as few as 5 copies per reaction of nucleic acids within 20 min. In clinical sample analysis, the RT RH-RPA demonstrated 100% accuracy in detecting the influenza A virus, underscoring its reliability in practical diagnostics. These findings highlight the stable specificity, rapid performance, high sensitivity, and cost-effectiveness of the RH-RPA methods, showcasing their potential as promising tools for point-of-care nucleic acid detection.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.