{"title":"5-去甲基多甲氧基黄酮通过减少脂肪组织炎症、促进褐变和调节高脂肪饮食喂养小鼠的肠道微生物群来减轻肥胖","authors":"Wei-Sheng Lin, Yu-Lu Lin, Yen-Chun Koh, Pin-Yu Ho, Yu-Cheng Lin, Chi-Tang Ho, Min-Hsiung Pan","doi":"10.1002/mnfr.70069","DOIUrl":null,"url":null,"abstract":"Given the escalating prevalence of obesity worldwide, identifying efficacious dietary components is crucial. This study investigated whether citrus-derived 5-demethyl-polymethoxyflavones (5-DPMFs) protect against obesity in high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD and supplemented with a citrus-derived powder (CP) containing 5-DPMFs as the main bioactive components. Two doses of CP (0.25% and 1% in the diet) were tested, corresponding to approximately 36 and 145 mg/kg body weight of 5-DPMFs, respectively. Key adipose tissue parameters were assessed, including inflammatory cytokines and browning markers associated with p38 MAPK signaling. Treatment with 5-DPMFs significantly attenuated adipose tissue inflammation, as evidenced by reduced levels of MCP-1, TNF-α, IL-6, and IL-1β. Concurrently, fat browning was enhanced by upregulating thermogenic and mitochondrial proteins. Gut microbiota analysis revealed that 5-DPMFs increased the relative abundance of beneficial probiotic species, such as <i>Lactobacillus</i> and <i>Limosilactobacillus reuteri</i>, which have been linked to improved metabolic profiles. These findings demonstrate that 5-DPMFs mitigate obesity-associated adipose inflammation, promote the browning of white adipose tissue (WAT), and favorably regulate gut microbiota composition in HFD-fed mice. Our results suggest that 5-DPMFs could serve as a functional food ingredient for obesity prevention and management.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"6 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-Demethyl-Polymethoxyflavones Mitigate Obesity by Reducing Adipose Tissue Inflammation, Promoting Browning, and Modulating Gut Microbiota in High-Fat Diet-Fed Mice\",\"authors\":\"Wei-Sheng Lin, Yu-Lu Lin, Yen-Chun Koh, Pin-Yu Ho, Yu-Cheng Lin, Chi-Tang Ho, Min-Hsiung Pan\",\"doi\":\"10.1002/mnfr.70069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the escalating prevalence of obesity worldwide, identifying efficacious dietary components is crucial. This study investigated whether citrus-derived 5-demethyl-polymethoxyflavones (5-DPMFs) protect against obesity in high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD and supplemented with a citrus-derived powder (CP) containing 5-DPMFs as the main bioactive components. Two doses of CP (0.25% and 1% in the diet) were tested, corresponding to approximately 36 and 145 mg/kg body weight of 5-DPMFs, respectively. Key adipose tissue parameters were assessed, including inflammatory cytokines and browning markers associated with p38 MAPK signaling. Treatment with 5-DPMFs significantly attenuated adipose tissue inflammation, as evidenced by reduced levels of MCP-1, TNF-α, IL-6, and IL-1β. Concurrently, fat browning was enhanced by upregulating thermogenic and mitochondrial proteins. Gut microbiota analysis revealed that 5-DPMFs increased the relative abundance of beneficial probiotic species, such as <i>Lactobacillus</i> and <i>Limosilactobacillus reuteri</i>, which have been linked to improved metabolic profiles. These findings demonstrate that 5-DPMFs mitigate obesity-associated adipose inflammation, promote the browning of white adipose tissue (WAT), and favorably regulate gut microbiota composition in HFD-fed mice. Our results suggest that 5-DPMFs could serve as a functional food ingredient for obesity prevention and management.\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.70069\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70069","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
5-Demethyl-Polymethoxyflavones Mitigate Obesity by Reducing Adipose Tissue Inflammation, Promoting Browning, and Modulating Gut Microbiota in High-Fat Diet-Fed Mice
Given the escalating prevalence of obesity worldwide, identifying efficacious dietary components is crucial. This study investigated whether citrus-derived 5-demethyl-polymethoxyflavones (5-DPMFs) protect against obesity in high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD and supplemented with a citrus-derived powder (CP) containing 5-DPMFs as the main bioactive components. Two doses of CP (0.25% and 1% in the diet) were tested, corresponding to approximately 36 and 145 mg/kg body weight of 5-DPMFs, respectively. Key adipose tissue parameters were assessed, including inflammatory cytokines and browning markers associated with p38 MAPK signaling. Treatment with 5-DPMFs significantly attenuated adipose tissue inflammation, as evidenced by reduced levels of MCP-1, TNF-α, IL-6, and IL-1β. Concurrently, fat browning was enhanced by upregulating thermogenic and mitochondrial proteins. Gut microbiota analysis revealed that 5-DPMFs increased the relative abundance of beneficial probiotic species, such as Lactobacillus and Limosilactobacillus reuteri, which have been linked to improved metabolic profiles. These findings demonstrate that 5-DPMFs mitigate obesity-associated adipose inflammation, promote the browning of white adipose tissue (WAT), and favorably regulate gut microbiota composition in HFD-fed mice. Our results suggest that 5-DPMFs could serve as a functional food ingredient for obesity prevention and management.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.