{"title":"基于多智能体强化学习的协同无人机光无线通信","authors":"Jiangang Liu;Hanjiang Luo;Hang Tao;Jiahong Liu;Jiehan Zhou","doi":"10.1109/TNSM.2025.3543160","DOIUrl":null,"url":null,"abstract":"In maritime Internet of Things (IoT) systems, leveraging a swarm of Uncrewed Aerial Vehicles (UAVs) and optical communication can achieve a variety of potential maritime missions. However, due to the high directionality of the optical beam and interference from the marine environment, the optical link via UAVs as relays is prone to interruption. To address this challenge, we propose a Joint Link Optimization Scheme (JLOS) that includes Wind Disturbance Resistance (WDR) and Adaptive Beamwidth Adjustment (ABA). In WDR, we first model the problem as a Partially Observed Markov Decision Process (POMDP), and then design a collaborative Multi-Agent Reinforcement Learning (MARL) approach to control a swarm of UAVs in windy conditions, to maintain mechanical stability and prevent link interruption. Furthermore, in ABA, to reduce uncertainties from control activities and environmental factors like sunlight and fog, we design an adaptive algorithm using distributed MARL. It adjusts beamwidth based on historical UAV locations and link Bit Error Ratio (BER) to improve communication reliability. Numerical simulations confirm its effectiveness in enhancing robust data transmission.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"1345-1356"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"JLOS: A Cooperative UAV-Based Optical Wireless Communication With Multi-Agent Reinforcement Learning\",\"authors\":\"Jiangang Liu;Hanjiang Luo;Hang Tao;Jiahong Liu;Jiehan Zhou\",\"doi\":\"10.1109/TNSM.2025.3543160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In maritime Internet of Things (IoT) systems, leveraging a swarm of Uncrewed Aerial Vehicles (UAVs) and optical communication can achieve a variety of potential maritime missions. However, due to the high directionality of the optical beam and interference from the marine environment, the optical link via UAVs as relays is prone to interruption. To address this challenge, we propose a Joint Link Optimization Scheme (JLOS) that includes Wind Disturbance Resistance (WDR) and Adaptive Beamwidth Adjustment (ABA). In WDR, we first model the problem as a Partially Observed Markov Decision Process (POMDP), and then design a collaborative Multi-Agent Reinforcement Learning (MARL) approach to control a swarm of UAVs in windy conditions, to maintain mechanical stability and prevent link interruption. Furthermore, in ABA, to reduce uncertainties from control activities and environmental factors like sunlight and fog, we design an adaptive algorithm using distributed MARL. It adjusts beamwidth based on historical UAV locations and link Bit Error Ratio (BER) to improve communication reliability. Numerical simulations confirm its effectiveness in enhancing robust data transmission.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 2\",\"pages\":\"1345-1356\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10891385/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10891385/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
JLOS: A Cooperative UAV-Based Optical Wireless Communication With Multi-Agent Reinforcement Learning
In maritime Internet of Things (IoT) systems, leveraging a swarm of Uncrewed Aerial Vehicles (UAVs) and optical communication can achieve a variety of potential maritime missions. However, due to the high directionality of the optical beam and interference from the marine environment, the optical link via UAVs as relays is prone to interruption. To address this challenge, we propose a Joint Link Optimization Scheme (JLOS) that includes Wind Disturbance Resistance (WDR) and Adaptive Beamwidth Adjustment (ABA). In WDR, we first model the problem as a Partially Observed Markov Decision Process (POMDP), and then design a collaborative Multi-Agent Reinforcement Learning (MARL) approach to control a swarm of UAVs in windy conditions, to maintain mechanical stability and prevent link interruption. Furthermore, in ABA, to reduce uncertainties from control activities and environmental factors like sunlight and fog, we design an adaptive algorithm using distributed MARL. It adjusts beamwidth based on historical UAV locations and link Bit Error Ratio (BER) to improve communication reliability. Numerical simulations confirm its effectiveness in enhancing robust data transmission.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.