{"title":"5G边缘多优先级卸载任务完成率与时延联合优化","authors":"Parisa Fard Moshiri;Murat Simsek;Burak Kantarci","doi":"10.1109/TNSM.2024.3525004","DOIUrl":null,"url":null,"abstract":"Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"1357-1371"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Optimization of Completion Ratio and Latency of Offloaded Tasks With Multiple Priority Levels in 5G Edge\",\"authors\":\"Parisa Fard Moshiri;Murat Simsek;Burak Kantarci\",\"doi\":\"10.1109/TNSM.2024.3525004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 2\",\"pages\":\"1357-1371\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819499/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819499/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Joint Optimization of Completion Ratio and Latency of Offloaded Tasks With Multiple Priority Levels in 5G Edge
Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.
期刊介绍:
IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.