5G边缘多优先级卸载任务完成率与时延联合优化

IF 4.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Parisa Fard Moshiri;Murat Simsek;Burak Kantarci
{"title":"5G边缘多优先级卸载任务完成率与时延联合优化","authors":"Parisa Fard Moshiri;Murat Simsek;Burak Kantarci","doi":"10.1109/TNSM.2024.3525004","DOIUrl":null,"url":null,"abstract":"Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.","PeriodicalId":13423,"journal":{"name":"IEEE Transactions on Network and Service Management","volume":"22 2","pages":"1357-1371"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Optimization of Completion Ratio and Latency of Offloaded Tasks With Multiple Priority Levels in 5G Edge\",\"authors\":\"Parisa Fard Moshiri;Murat Simsek;Burak Kantarci\",\"doi\":\"10.1109/TNSM.2024.3525004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.\",\"PeriodicalId\":13423,\"journal\":{\"name\":\"IEEE Transactions on Network and Service Management\",\"volume\":\"22 2\",\"pages\":\"1357-1371\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network and Service Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819499/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network and Service Management","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819499/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

多访问边缘计算(MEC)被广泛认为是需要最小延迟的应用程序的基本推动者。然而,文献中对丢任务比度量的研究并不深入。忽略这个度量可能会降低系统有效管理任务的能力,导致消除或未处理任务的数量增加。本文提出了一种5G-MEC任务卸载方案,重点是最小化丢任务比、计算延迟和通信延迟。我们采用混合整数线性规划(MILP)、粒子群优化(PSO)和遗传算法(GA)来优化延迟和丢任务率。我们对任务数量和用户设备(UE)如何影响丢弃任务的比例和延迟进行了分析。终端生成的任务分为紧急任务和非紧急任务。具有紧急任务的ue优先处理,以确保零丢包率。在5G-MEC任务卸载环境下,我们提出的方法提高了基准方法先到先服务(FCFS)和最短任务优先(STF)的性能。在基于milp的方法下,延迟与GA相比减少了大约55%,与PSO相比减少了35%。与遗传算法相比,基于milp的方法的丢任务率降低了约70%,与PSO相比降低了40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Optimization of Completion Ratio and Latency of Offloaded Tasks With Multiple Priority Levels in 5G Edge
Multi-Access Edge Computing (MEC) is widely recognized as an essential enabler for applications that necessitate minimal latency. However, the dropped task ratio metric has not been studied thoroughly in literature. Neglecting this metric can potentially reduce the system’s capability to effectively manage tasks, leading to an increase in the number of eliminated or unprocessed tasks. This paper presents a 5G-MEC task offloading scenario with a focus on minimizing the dropped task ratio, computational latency, and communication latency. We employ Mixed Integer Linear Programming (MILP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) to optimize the latency and dropped task ratio. We conduct an analysis on how the quantity of tasks and User Equipment (UE) impacts the ratio of dropped tasks and the latency. The tasks that are generated by UEs are classified into two categories: urgent tasks and non-urgent tasks. The UEs with urgent tasks are prioritized in processing to ensure a zero-dropped task ratio. Our proposed method improves the performance of the baseline methods, First Come First Serve (FCFS) and Shortest Task First (STF), in the context of 5G-MEC task offloading. Under the MILP-based approach, the latency is reduced by approximately 55% compared to GA and 35% compared to PSO. The dropped task ratio under the MILP-based approach is reduced by approximately 70% compared to GA and by 40% compared to PSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Network and Service Management
IEEE Transactions on Network and Service Management Computer Science-Computer Networks and Communications
CiteScore
9.30
自引率
15.10%
发文量
325
期刊介绍: IEEE Transactions on Network and Service Management will publish (online only) peerreviewed archival quality papers that advance the state-of-the-art and practical applications of network and service management. Theoretical research contributions (presenting new concepts and techniques) and applied contributions (reporting on experiences and experiments with actual systems) will be encouraged. These transactions will focus on the key technical issues related to: Management Models, Architectures and Frameworks; Service Provisioning, Reliability and Quality Assurance; Management Functions; Enabling Technologies; Information and Communication Models; Policies; Applications and Case Studies; Emerging Technologies and Standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信