基于朗肯损伤能法的宽温度范围短路条件下SiC mosfet栅极开裂的初步二维弹塑性模型

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Mustafa Shqair, Emmanuel Sarraute, Frédéric Richardeau
{"title":"基于朗肯损伤能法的宽温度范围短路条件下SiC mosfet栅极开裂的初步二维弹塑性模型","authors":"Mustafa Shqair,&nbsp;Emmanuel Sarraute,&nbsp;Frédéric Richardeau","doi":"10.1016/j.microrel.2025.115757","DOIUrl":null,"url":null,"abstract":"<div><div>For the first time in SiC MOSFETs, structural and physical modeling of the Intermediate-Layer-Dielectric (ILD) cracking in a planar gate under short-pulse short-circuit conditions is proposed. This approach employs an energy-based Rankine damage model, relying on the SiO<sub>2</sub> mechanical properties. The Rankine model has been effectively integrated into a comprehensive 2D electrothermal-metallurgical and elastoplastic-mechanical model across a wide range of temperatures. Initial results enable the extraction of crack penetration depth from a single pulse, paving the way for estimating the average number of critical cycles leading to a potentially complete destructive ILD fracture.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"170 ","pages":"Article 115757"},"PeriodicalIF":1.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminary 2D elastoplastic modeling of gate cracking in SiC MOSFETs under short-circuit conditions across a wide temperature-range using rankine's damage energetic approach\",\"authors\":\"Mustafa Shqair,&nbsp;Emmanuel Sarraute,&nbsp;Frédéric Richardeau\",\"doi\":\"10.1016/j.microrel.2025.115757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>For the first time in SiC MOSFETs, structural and physical modeling of the Intermediate-Layer-Dielectric (ILD) cracking in a planar gate under short-pulse short-circuit conditions is proposed. This approach employs an energy-based Rankine damage model, relying on the SiO<sub>2</sub> mechanical properties. The Rankine model has been effectively integrated into a comprehensive 2D electrothermal-metallurgical and elastoplastic-mechanical model across a wide range of temperatures. Initial results enable the extraction of crack penetration depth from a single pulse, paving the way for estimating the average number of critical cycles leading to a potentially complete destructive ILD fracture.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"170 \",\"pages\":\"Article 115757\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271425001702\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425001702","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在SiC mosfet中,首次提出了平面栅极在短脉冲短路条件下的中间层介电体(ILD)裂纹的结构和物理模型。该方法采用基于能量的朗肯损伤模型,依赖于SiO2的力学性能。Rankine模型已有效地集成到广泛温度范围内的综合二维电热-冶金和弹塑性-力学模型中。初步结果可以从单个脉冲中提取裂缝穿透深度,为估计导致潜在的完全破坏性ILD裂缝的平均临界循环次数铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminary 2D elastoplastic modeling of gate cracking in SiC MOSFETs under short-circuit conditions across a wide temperature-range using rankine's damage energetic approach
For the first time in SiC MOSFETs, structural and physical modeling of the Intermediate-Layer-Dielectric (ILD) cracking in a planar gate under short-pulse short-circuit conditions is proposed. This approach employs an energy-based Rankine damage model, relying on the SiO2 mechanical properties. The Rankine model has been effectively integrated into a comprehensive 2D electrothermal-metallurgical and elastoplastic-mechanical model across a wide range of temperatures. Initial results enable the extraction of crack penetration depth from a single pulse, paving the way for estimating the average number of critical cycles leading to a potentially complete destructive ILD fracture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信