Nathaniel B. Willis , Corinne N. Cannavale , Anne M. Walk , Nicholas A. Burd , Hannah D. Holscher , Naiman A. Khan
{"title":"抑制控制与超重和肥胖成人粪便短链脂肪酸浓度有关","authors":"Nathaniel B. Willis , Corinne N. Cannavale , Anne M. Walk , Nicholas A. Burd , Hannah D. Holscher , Naiman A. Khan","doi":"10.1016/j.nutres.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is a pro-inflammatory condition with negative effects on executive functioning. Increased inflammation dysregulates gastrointestinal homeostasis and alters microbiota community composition. The gut microbiota produce immunomodulatory short-chain fatty acids (SCFA) that have been related to cognition in obesity, but the neural effects are not explored. Here, we hypothesized that greater fecal SCFA would be positively related to neuroelectric markers of inhibitory control and conflict monitoring in obesity. A cross-sectional cohort of 87 adults (35 ± 6 years, 53 females) with overweight and obesity (BMI = 32 ± 6 kg/m<sup>2</sup>) provided fresh fecal samples and participated in cognitive testing to assess response inhibition and conflict monitoring with electroencephalographic recording. Linear regressions, controlling for age, sex, BMI, and energy-adjusted dietary fiber intake, revealed positive relationships between NoGo N2 mean amplitude and fecal SCFA concentrations. Linear discriminant analysis effect size (LEfSe) revealed 16 amplicon sequence variants differentially abundant between high and low butyrate groups with <em>Roseburia</em> and <em>Adlercreutzia</em> individually related to NoGo N2 mean amplitude in MaAsLin2 modeling. Thus, greater fecal SCFA concentrations and SCFA producing microbiota (i.e., <em>Roseburia</em>) were related to markers of superior conflict monitoring in the NoGo task when adjusting for key covariates. These data highlight key associations between bacterial derived gut signaling molecules and neural regulation in cognitive domains particularly relevant to weight status that warrant further investigation.</div></div>","PeriodicalId":19245,"journal":{"name":"Nutrition Research","volume":"138 ","pages":"Pages 12-21"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory control is related to fecal short-chain fatty acid concentrations in adults with overweight and obesity\",\"authors\":\"Nathaniel B. Willis , Corinne N. Cannavale , Anne M. Walk , Nicholas A. Burd , Hannah D. Holscher , Naiman A. Khan\",\"doi\":\"10.1016/j.nutres.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Obesity is a pro-inflammatory condition with negative effects on executive functioning. Increased inflammation dysregulates gastrointestinal homeostasis and alters microbiota community composition. The gut microbiota produce immunomodulatory short-chain fatty acids (SCFA) that have been related to cognition in obesity, but the neural effects are not explored. Here, we hypothesized that greater fecal SCFA would be positively related to neuroelectric markers of inhibitory control and conflict monitoring in obesity. A cross-sectional cohort of 87 adults (35 ± 6 years, 53 females) with overweight and obesity (BMI = 32 ± 6 kg/m<sup>2</sup>) provided fresh fecal samples and participated in cognitive testing to assess response inhibition and conflict monitoring with electroencephalographic recording. Linear regressions, controlling for age, sex, BMI, and energy-adjusted dietary fiber intake, revealed positive relationships between NoGo N2 mean amplitude and fecal SCFA concentrations. Linear discriminant analysis effect size (LEfSe) revealed 16 amplicon sequence variants differentially abundant between high and low butyrate groups with <em>Roseburia</em> and <em>Adlercreutzia</em> individually related to NoGo N2 mean amplitude in MaAsLin2 modeling. Thus, greater fecal SCFA concentrations and SCFA producing microbiota (i.e., <em>Roseburia</em>) were related to markers of superior conflict monitoring in the NoGo task when adjusting for key covariates. These data highlight key associations between bacterial derived gut signaling molecules and neural regulation in cognitive domains particularly relevant to weight status that warrant further investigation.</div></div>\",\"PeriodicalId\":19245,\"journal\":{\"name\":\"Nutrition Research\",\"volume\":\"138 \",\"pages\":\"Pages 12-21\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0271531725000417\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0271531725000417","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Inhibitory control is related to fecal short-chain fatty acid concentrations in adults with overweight and obesity
Obesity is a pro-inflammatory condition with negative effects on executive functioning. Increased inflammation dysregulates gastrointestinal homeostasis and alters microbiota community composition. The gut microbiota produce immunomodulatory short-chain fatty acids (SCFA) that have been related to cognition in obesity, but the neural effects are not explored. Here, we hypothesized that greater fecal SCFA would be positively related to neuroelectric markers of inhibitory control and conflict monitoring in obesity. A cross-sectional cohort of 87 adults (35 ± 6 years, 53 females) with overweight and obesity (BMI = 32 ± 6 kg/m2) provided fresh fecal samples and participated in cognitive testing to assess response inhibition and conflict monitoring with electroencephalographic recording. Linear regressions, controlling for age, sex, BMI, and energy-adjusted dietary fiber intake, revealed positive relationships between NoGo N2 mean amplitude and fecal SCFA concentrations. Linear discriminant analysis effect size (LEfSe) revealed 16 amplicon sequence variants differentially abundant between high and low butyrate groups with Roseburia and Adlercreutzia individually related to NoGo N2 mean amplitude in MaAsLin2 modeling. Thus, greater fecal SCFA concentrations and SCFA producing microbiota (i.e., Roseburia) were related to markers of superior conflict monitoring in the NoGo task when adjusting for key covariates. These data highlight key associations between bacterial derived gut signaling molecules and neural regulation in cognitive domains particularly relevant to weight status that warrant further investigation.
期刊介绍:
Nutrition Research publishes original research articles, communications, and reviews on basic and applied nutrition. The mission of Nutrition Research is to serve as the journal for global communication of nutrition and life sciences research on diet and health. The field of nutrition sciences includes, but is not limited to, the study of nutrients during growth, reproduction, aging, health, and disease.
Articles covering basic and applied research on all aspects of nutrition sciences are encouraged, including: nutritional biochemistry and metabolism; metabolomics, nutrient gene interactions; nutrient requirements for health; nutrition and disease; digestion and absorption; nutritional anthropology; epidemiology; the influence of socioeconomic and cultural factors on nutrition of the individual and the community; the impact of nutrient intake on disease response and behavior; the consequences of nutritional deficiency on growth and development, endocrine and nervous systems, and immunity; nutrition and gut microbiota; food intolerance and allergy; nutrient drug interactions; nutrition and aging; nutrition and cancer; obesity; diabetes; and intervention programs.