Tianyu Zhu, Wanqing Xu, Chenlin Peng, Lan Sh, Limin Wu
{"title":"介孔碳球增强柔性压力传感器,具有优越的线性和宽范围,可穿戴健康监测","authors":"Tianyu Zhu, Wanqing Xu, Chenlin Peng, Lan Sh, Limin Wu","doi":"10.1002/aelm.202400985","DOIUrl":null,"url":null,"abstract":"Flexible pressure sensors are pivotal in advancing wearable technologies, particularly in human health monitoring. However, the development of high-performance pressure sensors is challenged by the intrinsic trade-offs among precision, sensitivity, and sensing range. In this study, a novel unstructured flexible capacitive pressure sensing film is introduced, incorporating mesoporous carbon spheres into a flexible polymer matrix. Leveraging the percolation mechanism for transduction, the film achieves high sensitivity (0.16 kPa<sup>−1</sup>), outstanding precision (<2.987%), high linearity (R<sup>2</sup> = 0.995 across 0–10 kPa), and an impressive measurement range (1000 kPa). Its simple design allows for rapid response to varying pressures and exceptional stability over 12 000 cyclic tests. This sensor can precisely monitor both subtle physiological signals and dynamic motion, opening new possibilities for health tracking, wearable diagnostics, and dynamic human-machine interactions.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"37 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoporous Carbon Sphere-Enhanced Flexible Pressure Sensor with Superior Linearity and Wide Range for Wearable Health Monitoring\",\"authors\":\"Tianyu Zhu, Wanqing Xu, Chenlin Peng, Lan Sh, Limin Wu\",\"doi\":\"10.1002/aelm.202400985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible pressure sensors are pivotal in advancing wearable technologies, particularly in human health monitoring. However, the development of high-performance pressure sensors is challenged by the intrinsic trade-offs among precision, sensitivity, and sensing range. In this study, a novel unstructured flexible capacitive pressure sensing film is introduced, incorporating mesoporous carbon spheres into a flexible polymer matrix. Leveraging the percolation mechanism for transduction, the film achieves high sensitivity (0.16 kPa<sup>−1</sup>), outstanding precision (<2.987%), high linearity (R<sup>2</sup> = 0.995 across 0–10 kPa), and an impressive measurement range (1000 kPa). Its simple design allows for rapid response to varying pressures and exceptional stability over 12 000 cyclic tests. This sensor can precisely monitor both subtle physiological signals and dynamic motion, opening new possibilities for health tracking, wearable diagnostics, and dynamic human-machine interactions.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400985\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400985","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Mesoporous Carbon Sphere-Enhanced Flexible Pressure Sensor with Superior Linearity and Wide Range for Wearable Health Monitoring
Flexible pressure sensors are pivotal in advancing wearable technologies, particularly in human health monitoring. However, the development of high-performance pressure sensors is challenged by the intrinsic trade-offs among precision, sensitivity, and sensing range. In this study, a novel unstructured flexible capacitive pressure sensing film is introduced, incorporating mesoporous carbon spheres into a flexible polymer matrix. Leveraging the percolation mechanism for transduction, the film achieves high sensitivity (0.16 kPa−1), outstanding precision (<2.987%), high linearity (R2 = 0.995 across 0–10 kPa), and an impressive measurement range (1000 kPa). Its simple design allows for rapid response to varying pressures and exceptional stability over 12 000 cyclic tests. This sensor can precisely monitor both subtle physiological signals and dynamic motion, opening new possibilities for health tracking, wearable diagnostics, and dynamic human-machine interactions.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.