Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury
{"title":"神经网络电位基础模型的不确定性量化","authors":"Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury","doi":"10.1038/s41524-025-01572-y","DOIUrl":null,"url":null,"abstract":"<p>For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"69 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification for neural network potential foundation models\",\"authors\":\"Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury\",\"doi\":\"10.1038/s41524-025-01572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01572-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01572-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Uncertainty quantification for neural network potential foundation models
For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.