神经网络电位基础模型的不确定性量化

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury
{"title":"神经网络电位基础模型的不确定性量化","authors":"Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury","doi":"10.1038/s41524-025-01572-y","DOIUrl":null,"url":null,"abstract":"<p>For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"69 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty quantification for neural network potential foundation models\",\"authors\":\"Jenna A. Bilbrey, Jesun S. Firoz, Mal-Soon Lee, Sutanay Choudhury\",\"doi\":\"10.1038/s41524-025-01572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01572-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01572-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了使神经网络电位(NNPs)得到广泛的应用,研究人员必须能够信任模型的输出。然而,神经网络的黑箱性质及其固有的随机性往往是阻碍,特别是对于在广泛的化学空间中训练的基础模型。在预测时提供的不确定性信息有助于减少对nnp的厌恶。在这项工作中,我们详细介绍了两种不确定度量化方法。通过微调基础模型集合的读出层,读出集成提供了关于模型不确定性的信息,而分位数回归通过用分布预测取代点预测,提供了关于底层训练数据中的不确定性的信息。我们用MACE-MP-0模型演示了我们的方法,将UQ应用于基础模型和一系列微调模型。由读出集合和分位数方法产生的不确定性被证明是可以判断NNP输出质量的不同措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Uncertainty quantification for neural network potential foundation models

Uncertainty quantification for neural network potential foundation models

For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space. Uncertainty information provided at the time of prediction can help reduce aversion to NNPs. In this work, we detail two uncertainty quantification (UQ) methods. Readout ensembling, by finetuning the readout layers of an ensemble of foundation models, provides information about model uncertainty, while quantile regression, by replacing point predictions with distributional predictions, provides information about uncertainty within the underlying training data. We demonstrate our approach with the MACE-MP-0 model, applying UQ to the foundation model and a series of finetuned models. The uncertainties produced by the readout ensemble and quantile methods are demonstrated to be distinct measures by which the quality of the NNP output can be judged.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信