{"title":"贝叶斯框架下具有动态协变量的多元退化数据建模","authors":"Zhengzhi Lin , Xiao Liu , Yisha Xiang , Yili Hong","doi":"10.1016/j.ress.2025.111115","DOIUrl":null,"url":null,"abstract":"<div><div>Degradation data are essential for determining the reliability of high-end products and systems, especially when covering multiple degradation characteristics (DCs). Modern degradation studies not only measure these characteristics but also record dynamic system usage and environmental factors, such as temperature, humidity, and ultraviolet exposures, referred to as the dynamic covariates. Most current research either focuses on a single DC with dynamic covariates or multiple DCs with fixed covariates. This paper presents a Bayesian framework to analyze data with multiple DCs, which incorporates dynamic covariates. We develop a Bayesian framework for mixed effect nonlinear general path models to describe the degradation path and use Bayesian shape-constrained P-splines to model the effects of dynamic covariates. We also detail algorithms for estimating the failure time distribution induced by our degradation model, validate the developed methods through simulation, and illustrate their use in predicting the lifespan of organic coatings in dynamic environments.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"261 ","pages":"Article 111115"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling multivariate degradation data with dynamic covariates under a Bayesian framework\",\"authors\":\"Zhengzhi Lin , Xiao Liu , Yisha Xiang , Yili Hong\",\"doi\":\"10.1016/j.ress.2025.111115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Degradation data are essential for determining the reliability of high-end products and systems, especially when covering multiple degradation characteristics (DCs). Modern degradation studies not only measure these characteristics but also record dynamic system usage and environmental factors, such as temperature, humidity, and ultraviolet exposures, referred to as the dynamic covariates. Most current research either focuses on a single DC with dynamic covariates or multiple DCs with fixed covariates. This paper presents a Bayesian framework to analyze data with multiple DCs, which incorporates dynamic covariates. We develop a Bayesian framework for mixed effect nonlinear general path models to describe the degradation path and use Bayesian shape-constrained P-splines to model the effects of dynamic covariates. We also detail algorithms for estimating the failure time distribution induced by our degradation model, validate the developed methods through simulation, and illustrate their use in predicting the lifespan of organic coatings in dynamic environments.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"261 \",\"pages\":\"Article 111115\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025003163\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025003163","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Modeling multivariate degradation data with dynamic covariates under a Bayesian framework
Degradation data are essential for determining the reliability of high-end products and systems, especially when covering multiple degradation characteristics (DCs). Modern degradation studies not only measure these characteristics but also record dynamic system usage and environmental factors, such as temperature, humidity, and ultraviolet exposures, referred to as the dynamic covariates. Most current research either focuses on a single DC with dynamic covariates or multiple DCs with fixed covariates. This paper presents a Bayesian framework to analyze data with multiple DCs, which incorporates dynamic covariates. We develop a Bayesian framework for mixed effect nonlinear general path models to describe the degradation path and use Bayesian shape-constrained P-splines to model the effects of dynamic covariates. We also detail algorithms for estimating the failure time distribution induced by our degradation model, validate the developed methods through simulation, and illustrate their use in predicting the lifespan of organic coatings in dynamic environments.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.