两地树木的光谱w变化

IF 1 3区 数学 Q1 MATHEMATICS
Parameswar Basumatary , Debajit Kalita
{"title":"两地树木的光谱w变化","authors":"Parameswar Basumatary ,&nbsp;Debajit Kalita","doi":"10.1016/j.laa.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>This article introduces the concept of spectral <em>w</em>-variation of weighted graphs. A weighted graph <em>G</em> is said to have spectral <em>w</em>-variation in two places if adding an edge of positive weight <em>w</em> between two nonadjacent vertices of <em>G</em>, or increasing the weight of an existing edge by <em>w</em>, results in an increase of two Laplacian eigenvalues of <em>G</em> equally by <em>w</em> while keeping the other eigenvalues unchanged. This article characterizes the weighted graphs that have spectral <em>w</em>-variation in two places. It is proved that spectral <em>w</em>-variation in two places does not occur by increasing the weight of an existing edge in any weighted tree. Mainly, the article determines the weighted trees that have spectral <em>w</em>-variation in two places. As an application, we supply constructions of few classes of weighted trees with weights from the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> in which spectral <em>w</em>-variation occurs in two places.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"718 ","pages":"Pages 81-103"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral w-variation of trees in two places\",\"authors\":\"Parameswar Basumatary ,&nbsp;Debajit Kalita\",\"doi\":\"10.1016/j.laa.2025.04.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article introduces the concept of spectral <em>w</em>-variation of weighted graphs. A weighted graph <em>G</em> is said to have spectral <em>w</em>-variation in two places if adding an edge of positive weight <em>w</em> between two nonadjacent vertices of <em>G</em>, or increasing the weight of an existing edge by <em>w</em>, results in an increase of two Laplacian eigenvalues of <em>G</em> equally by <em>w</em> while keeping the other eigenvalues unchanged. This article characterizes the weighted graphs that have spectral <em>w</em>-variation in two places. It is proved that spectral <em>w</em>-variation in two places does not occur by increasing the weight of an existing edge in any weighted tree. Mainly, the article determines the weighted trees that have spectral <em>w</em>-variation in two places. As an application, we supply constructions of few classes of weighted trees with weights from the interval <span><math><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span> in which spectral <em>w</em>-variation occurs in two places.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"718 \",\"pages\":\"Pages 81-103\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001533\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001533","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了加权图谱w变差的概念。如果在G的两个非相邻顶点之间添加一条正权值w的边,或者将现有边的权值增加w,则会导致G的两个拉普拉斯特征值相等地增加w,同时保持其他特征值不变,则加权图G在两个地方具有谱w变化。本文描述了两处具有谱w变化的加权图的特征。通过增加任意加权树中已有边的权值,证明了两处的谱w不发生变化。本文主要确定了两处具有谱w变化的加权树。作为应用,我们给出了几类权值在区间(0,1)内的加权树的构造,其中谱w变化发生在两个位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral w-variation of trees in two places
This article introduces the concept of spectral w-variation of weighted graphs. A weighted graph G is said to have spectral w-variation in two places if adding an edge of positive weight w between two nonadjacent vertices of G, or increasing the weight of an existing edge by w, results in an increase of two Laplacian eigenvalues of G equally by w while keeping the other eigenvalues unchanged. This article characterizes the weighted graphs that have spectral w-variation in two places. It is proved that spectral w-variation in two places does not occur by increasing the weight of an existing edge in any weighted tree. Mainly, the article determines the weighted trees that have spectral w-variation in two places. As an application, we supply constructions of few classes of weighted trees with weights from the interval (0,1) in which spectral w-variation occurs in two places.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信