高效隧道氧化钝化接触太阳能电池用pecvd沉积双硼硅酸盐玻璃层增强硼发射体的钝化和接触性能

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xian Zhang , Haojiang Du , Wei Liu , Zunke Liu , Hongkai Zhou , Ruoyi Wang , Hongyu Zhang , Huan Pu , Mingdun Liao , Zhiqin Ying , Xi Yang , Zhenhai Yang , Yuheng Zeng , Jichun Ye
{"title":"高效隧道氧化钝化接触太阳能电池用pecvd沉积双硼硅酸盐玻璃层增强硼发射体的钝化和接触性能","authors":"Xian Zhang ,&nbsp;Haojiang Du ,&nbsp;Wei Liu ,&nbsp;Zunke Liu ,&nbsp;Hongkai Zhou ,&nbsp;Ruoyi Wang ,&nbsp;Hongyu Zhang ,&nbsp;Huan Pu ,&nbsp;Mingdun Liao ,&nbsp;Zhiqin Ying ,&nbsp;Xi Yang ,&nbsp;Zhenhai Yang ,&nbsp;Yuheng Zeng ,&nbsp;Jichun Ye","doi":"10.1016/j.mtphys.2025.101735","DOIUrl":null,"url":null,"abstract":"<div><div>The mainstream industrial-grade boron emitters for <em>n</em>-type tunnel oxide passivating contact (TOPCon) solar cells (SCs) are typically fabricated using low-pressure (LP) boron diffusion technology. Although this approach has achieved great success in the photovoltaic (PV) industry, LP-based boron emitters still face significant challenges in meeting the current demands for high-efficiency c-Si SCs while ensuring safe production. Plasma-enhanced chemical vapor deposition (PECVD)-based boron diffusion technology holds the potential to address these issues, which, however, usually suffers from poor passivation quality, limiting its broader application in the PV industry. In this work, we propose a flexible and controllable method using PECVD to deposit a double-layer boron silicate glass (BSG), combined with high-temperature annealing, for the fabrication of boron emitters. Our results indicate that the PECVD-based boron emitters exhibit a higher surface boron concentration and a shallower boron diffusion depth, which enhance hole transport compared to LP-based boron emitters. Consequently, the PECVD-based boron emitters achieve superior passivation and contact properties, with a high implied open-circuit voltage of 715 mV, a low single-sided saturation current density of 8.8 fA/cm<sup>2</sup>, and a low contact resistivity of less than 0.5 mΩ·cm<sup>2</sup>. Additionally, proof-of-concept TOPCon SCs incorporating such PECVD-based boron emitters are fabricated, achieving a remarkable efficiency of 24.30 %, surpassing that of LP-based TOPCon SCs (23.51 %). This study introduces a flexible PECVD-based boron diffusion technology for TOPCon SCs, demonstrating significantly improved passivation and contact properties and highlighting its potential applications in the PV industry.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101735"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced passivation and contact properties of boron emitters through PECVD-deposited double boron silicate glass layers for high-efficiency tunnel oxide passivating contact solar cells\",\"authors\":\"Xian Zhang ,&nbsp;Haojiang Du ,&nbsp;Wei Liu ,&nbsp;Zunke Liu ,&nbsp;Hongkai Zhou ,&nbsp;Ruoyi Wang ,&nbsp;Hongyu Zhang ,&nbsp;Huan Pu ,&nbsp;Mingdun Liao ,&nbsp;Zhiqin Ying ,&nbsp;Xi Yang ,&nbsp;Zhenhai Yang ,&nbsp;Yuheng Zeng ,&nbsp;Jichun Ye\",\"doi\":\"10.1016/j.mtphys.2025.101735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The mainstream industrial-grade boron emitters for <em>n</em>-type tunnel oxide passivating contact (TOPCon) solar cells (SCs) are typically fabricated using low-pressure (LP) boron diffusion technology. Although this approach has achieved great success in the photovoltaic (PV) industry, LP-based boron emitters still face significant challenges in meeting the current demands for high-efficiency c-Si SCs while ensuring safe production. Plasma-enhanced chemical vapor deposition (PECVD)-based boron diffusion technology holds the potential to address these issues, which, however, usually suffers from poor passivation quality, limiting its broader application in the PV industry. In this work, we propose a flexible and controllable method using PECVD to deposit a double-layer boron silicate glass (BSG), combined with high-temperature annealing, for the fabrication of boron emitters. Our results indicate that the PECVD-based boron emitters exhibit a higher surface boron concentration and a shallower boron diffusion depth, which enhance hole transport compared to LP-based boron emitters. Consequently, the PECVD-based boron emitters achieve superior passivation and contact properties, with a high implied open-circuit voltage of 715 mV, a low single-sided saturation current density of 8.8 fA/cm<sup>2</sup>, and a low contact resistivity of less than 0.5 mΩ·cm<sup>2</sup>. Additionally, proof-of-concept TOPCon SCs incorporating such PECVD-based boron emitters are fabricated, achieving a remarkable efficiency of 24.30 %, surpassing that of LP-based TOPCon SCs (23.51 %). This study introduces a flexible PECVD-based boron diffusion technology for TOPCon SCs, demonstrating significantly improved passivation and contact properties and highlighting its potential applications in the PV industry.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"54 \",\"pages\":\"Article 101735\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000914\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000914","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

用于n型隧道氧化物钝化接触(TOPCon)太阳能电池(SCs)的主流工业级硼发射体通常采用低压(LP)硼扩散技术制造。尽管这种方法在光伏(PV)工业中取得了巨大的成功,但lp基硼发射体在满足当前对高效c-Si SCs的需求的同时确保安全生产仍然面临重大挑战。基于等离子体增强化学气相沉积(PECVD)的硼扩散技术具有解决这些问题的潜力,然而,这些问题通常受到钝化质量差的影响,限制了其在光伏行业的广泛应用。在这项工作中,我们提出了一种灵活可控的方法,利用PECVD沉积双层硼硅酸盐玻璃(BSG),结合高温退火,用于制造硼发射体。结果表明,与lp基硼发射体相比,pecvd基硼发射体具有更高的表面硼浓度和更浅的硼扩散深度,从而增强了空穴输运。因此,基于pecvd的硼发射体具有优异的钝化和接触性能,隐含开路电压高达715 mV,单侧饱和电流密度低至8.8 fA/cm2,接触电阻率低于0.5 mΩ·cm2。此外,还制作了包含这种PECVD-based硼发射器的概念验证型TOPCon SCs,其效率达到了24.30%,超过了LP-based TOPCon SCs(23.51%)。本研究为TOPCon sc引入了一种基于pecvd的柔性硼扩散技术,显示出显著改善的钝化和接触性能,并突出了其在光伏行业的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced passivation and contact properties of boron emitters through PECVD-deposited double boron silicate glass layers for high-efficiency tunnel oxide passivating contact solar cells

Enhanced passivation and contact properties of boron emitters through PECVD-deposited double boron silicate glass layers for high-efficiency tunnel oxide passivating contact solar cells

Enhanced passivation and contact properties of boron emitters through PECVD-deposited double boron silicate glass layers for high-efficiency tunnel oxide passivating contact solar cells
The mainstream industrial-grade boron emitters for n-type tunnel oxide passivating contact (TOPCon) solar cells (SCs) are typically fabricated using low-pressure (LP) boron diffusion technology. Although this approach has achieved great success in the photovoltaic (PV) industry, LP-based boron emitters still face significant challenges in meeting the current demands for high-efficiency c-Si SCs while ensuring safe production. Plasma-enhanced chemical vapor deposition (PECVD)-based boron diffusion technology holds the potential to address these issues, which, however, usually suffers from poor passivation quality, limiting its broader application in the PV industry. In this work, we propose a flexible and controllable method using PECVD to deposit a double-layer boron silicate glass (BSG), combined with high-temperature annealing, for the fabrication of boron emitters. Our results indicate that the PECVD-based boron emitters exhibit a higher surface boron concentration and a shallower boron diffusion depth, which enhance hole transport compared to LP-based boron emitters. Consequently, the PECVD-based boron emitters achieve superior passivation and contact properties, with a high implied open-circuit voltage of 715 mV, a low single-sided saturation current density of 8.8 fA/cm2, and a low contact resistivity of less than 0.5 mΩ·cm2. Additionally, proof-of-concept TOPCon SCs incorporating such PECVD-based boron emitters are fabricated, achieving a remarkable efficiency of 24.30 %, surpassing that of LP-based TOPCon SCs (23.51 %). This study introduces a flexible PECVD-based boron diffusion technology for TOPCon SCs, demonstrating significantly improved passivation and contact properties and highlighting its potential applications in the PV industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信