Manish K. Mathew;Xiao-Ding Cai;Chaofeng Li;Mehdi Mousavi;Reza Asadi;Junyong Park;Shameem Ahmed;Bidyut Sen;DongHyun Kim
{"title":"高速数字信道中精确多对串扰分析的广义混模s参数框架","authors":"Manish K. Mathew;Xiao-Ding Cai;Chaofeng Li;Mehdi Mousavi;Reza Asadi;Junyong Park;Shameem Ahmed;Bidyut Sen;DongHyun Kim","doi":"10.1109/TSIPI.2025.3557786","DOIUrl":null,"url":null,"abstract":"The accuracy of mixed-mode S-parameter conversion is important for crosstalk mitigation in high-speed digital systems. However, the conventional mixed-mode S-parameter formulation assumes equal even-mode and odd-mode impedances<inline-formula><tex-math>$\\ ( {\\ {{{{Z}}}_{{{oo}}}} = {{{{Z}}}_{{{oe}}}}\\ } )$</tex-math></inline-formula>, which limits its applicability, particularly in tightly coupled differential structures. In this article, we propose a novel mixed-mode S-parameter generalization (generalized M1/M2 approach) using an N-differential port network, which allows for multipair (i.e., pair-to-pair) crosstalk analysis on coupled differential systems, given by:<inline-formula><tex-math>$\\ {{[ {{{{{S}}}_{{{mm}}}}} ]}_{{{i}} \\times {{i}}}} = \\ ({{[ {{{{{M}}}_1}} ]}_{{{i}} \\times {{i}}}} \\times {{[ {{{{{S}}}_{{s}}}} ]}_{{{i}} \\times {{i}}}} + {{[ {{{{{M}}}_2}} ]}_{{{i}} \\times {{i}}}}) \\times {{( {{{{[ {{{{{M}}}_1}} ]}}_{{{i}} \\times {{i}}}} + \\ {{{[ {{{{{M}}}_2}} ]}}_{{{i}} \\times {{i}}}} \\times [ {{{{{S}}}_{{s}}}} ]} )}^{ - 1}}$</tex-math></inline-formula>. The proposed M1/M2 formulation eliminates the need for renormalization by integrating mode-dependent coupling factors <inline-formula><tex-math>${{{{k}}}_{{{oo}}}}\\ {and}\\ {{{{k}}}_{{{oe}}}},$</tex-math></inline-formula> ensuring a more physically meaningful representation of mixed-mode S-parameters, thereby improving the accuracy of both intrapair and interpair crosstalk analysis in high-speed digital systems. The effectiveness of the proposed M1/M2 approach is demonstrated through intrapair and interpair analysis on tightly coupled striplines, revealing peak-to-peak variations in differential return loss, interpair near-end crosstalk, and far-end crosstalk. Validation using a differential setup with commercial tools (Balun approach) confirmed the formulation's accuracy, with errors below 1%. In addition, measurement validation on a microstrip differential pair highlighted the model's scalability and precision, emphasizing the importance of incorporating mode-dependent impedance variations.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"4 ","pages":"96-108"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Mixed-Mode S-Parameter Framework for Accurate Multipair Crosstalk Analysis in High-Speed Digital Channels\",\"authors\":\"Manish K. Mathew;Xiao-Ding Cai;Chaofeng Li;Mehdi Mousavi;Reza Asadi;Junyong Park;Shameem Ahmed;Bidyut Sen;DongHyun Kim\",\"doi\":\"10.1109/TSIPI.2025.3557786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of mixed-mode S-parameter conversion is important for crosstalk mitigation in high-speed digital systems. However, the conventional mixed-mode S-parameter formulation assumes equal even-mode and odd-mode impedances<inline-formula><tex-math>$\\\\ ( {\\\\ {{{{Z}}}_{{{oo}}}} = {{{{Z}}}_{{{oe}}}}\\\\ } )$</tex-math></inline-formula>, which limits its applicability, particularly in tightly coupled differential structures. In this article, we propose a novel mixed-mode S-parameter generalization (generalized M1/M2 approach) using an N-differential port network, which allows for multipair (i.e., pair-to-pair) crosstalk analysis on coupled differential systems, given by:<inline-formula><tex-math>$\\\\ {{[ {{{{{S}}}_{{{mm}}}}} ]}_{{{i}} \\\\times {{i}}}} = \\\\ ({{[ {{{{{M}}}_1}} ]}_{{{i}} \\\\times {{i}}}} \\\\times {{[ {{{{{S}}}_{{s}}}} ]}_{{{i}} \\\\times {{i}}}} + {{[ {{{{{M}}}_2}} ]}_{{{i}} \\\\times {{i}}}}) \\\\times {{( {{{{[ {{{{{M}}}_1}} ]}}_{{{i}} \\\\times {{i}}}} + \\\\ {{{[ {{{{{M}}}_2}} ]}}_{{{i}} \\\\times {{i}}}} \\\\times [ {{{{{S}}}_{{s}}}} ]} )}^{ - 1}}$</tex-math></inline-formula>. The proposed M1/M2 formulation eliminates the need for renormalization by integrating mode-dependent coupling factors <inline-formula><tex-math>${{{{k}}}_{{{oo}}}}\\\\ {and}\\\\ {{{{k}}}_{{{oe}}}},$</tex-math></inline-formula> ensuring a more physically meaningful representation of mixed-mode S-parameters, thereby improving the accuracy of both intrapair and interpair crosstalk analysis in high-speed digital systems. The effectiveness of the proposed M1/M2 approach is demonstrated through intrapair and interpair analysis on tightly coupled striplines, revealing peak-to-peak variations in differential return loss, interpair near-end crosstalk, and far-end crosstalk. Validation using a differential setup with commercial tools (Balun approach) confirmed the formulation's accuracy, with errors below 1%. In addition, measurement validation on a microstrip differential pair highlighted the model's scalability and precision, emphasizing the importance of incorporating mode-dependent impedance variations.\",\"PeriodicalId\":100646,\"journal\":{\"name\":\"IEEE Transactions on Signal and Power Integrity\",\"volume\":\"4 \",\"pages\":\"96-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Power Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10948570/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10948570/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Mixed-Mode S-Parameter Framework for Accurate Multipair Crosstalk Analysis in High-Speed Digital Channels
The accuracy of mixed-mode S-parameter conversion is important for crosstalk mitigation in high-speed digital systems. However, the conventional mixed-mode S-parameter formulation assumes equal even-mode and odd-mode impedances$\ ( {\ {{{{Z}}}_{{{oo}}}} = {{{{Z}}}_{{{oe}}}}\ } )$, which limits its applicability, particularly in tightly coupled differential structures. In this article, we propose a novel mixed-mode S-parameter generalization (generalized M1/M2 approach) using an N-differential port network, which allows for multipair (i.e., pair-to-pair) crosstalk analysis on coupled differential systems, given by:$\ {{[ {{{{{S}}}_{{{mm}}}}} ]}_{{{i}} \times {{i}}}} = \ ({{[ {{{{{M}}}_1}} ]}_{{{i}} \times {{i}}}} \times {{[ {{{{{S}}}_{{s}}}} ]}_{{{i}} \times {{i}}}} + {{[ {{{{{M}}}_2}} ]}_{{{i}} \times {{i}}}}) \times {{( {{{{[ {{{{{M}}}_1}} ]}}_{{{i}} \times {{i}}}} + \ {{{[ {{{{{M}}}_2}} ]}}_{{{i}} \times {{i}}}} \times [ {{{{{S}}}_{{s}}}} ]} )}^{ - 1}}$. The proposed M1/M2 formulation eliminates the need for renormalization by integrating mode-dependent coupling factors ${{{{k}}}_{{{oo}}}}\ {and}\ {{{{k}}}_{{{oe}}}},$ ensuring a more physically meaningful representation of mixed-mode S-parameters, thereby improving the accuracy of both intrapair and interpair crosstalk analysis in high-speed digital systems. The effectiveness of the proposed M1/M2 approach is demonstrated through intrapair and interpair analysis on tightly coupled striplines, revealing peak-to-peak variations in differential return loss, interpair near-end crosstalk, and far-end crosstalk. Validation using a differential setup with commercial tools (Balun approach) confirmed the formulation's accuracy, with errors below 1%. In addition, measurement validation on a microstrip differential pair highlighted the model's scalability and precision, emphasizing the importance of incorporating mode-dependent impedance variations.