{"title":"通过 CALPHAD、机器学习和实验方法设计 BCC/FCC 双固溶耐火高熵合金","authors":"Longjun He, Chaoyue Wang, Mina Zhang, Jinghao Li, Tianlun Chen, Xianglin Zhou","doi":"10.1038/s41524-025-01597-3","DOIUrl":null,"url":null,"abstract":"<p>Refractory high-entropy alloys (RHEAs) typically exhibit a body-centered cubic (BCC) structure with excellent strength but poor ductility, which limits their practical applications. In this study, we designed BCC/FCC dual-phase RHEAs through phase diagram calculations and neural network modeling. The analysis of the binary phase formation relationships among alloying elements enabled the preliminary screening and inclusion of 13 liquid-phase-separated BCC/FCC dual-phase RHEAs in the training dataset for the machine learning model. Two strategic binary classifications of this dataset were conducted on HEAs to identify their “multiphase” and “solid solution” structures. Consequently, two neural network models were trained, achieving accuracies of 89.52% and 89.83%, respectively. These models predicted 51 BCC/FCC dual-phase RHEAs among 504 novel RHEAs, representing the first successful compositional design of metastable BCC/FCC dual-phase RHEAs. The arc-melted alloys exhibited refined dendritic structure. This study provides valuable insights for the tailored design of novel multi-phase RHEAs to achieve specific targeted properties.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"24 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of BCC/FCC dual-solid solution refractory high-entropy alloys through CALPHAD, machine learning and experimental methods\",\"authors\":\"Longjun He, Chaoyue Wang, Mina Zhang, Jinghao Li, Tianlun Chen, Xianglin Zhou\",\"doi\":\"10.1038/s41524-025-01597-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Refractory high-entropy alloys (RHEAs) typically exhibit a body-centered cubic (BCC) structure with excellent strength but poor ductility, which limits their practical applications. In this study, we designed BCC/FCC dual-phase RHEAs through phase diagram calculations and neural network modeling. The analysis of the binary phase formation relationships among alloying elements enabled the preliminary screening and inclusion of 13 liquid-phase-separated BCC/FCC dual-phase RHEAs in the training dataset for the machine learning model. Two strategic binary classifications of this dataset were conducted on HEAs to identify their “multiphase” and “solid solution” structures. Consequently, two neural network models were trained, achieving accuracies of 89.52% and 89.83%, respectively. These models predicted 51 BCC/FCC dual-phase RHEAs among 504 novel RHEAs, representing the first successful compositional design of metastable BCC/FCC dual-phase RHEAs. The arc-melted alloys exhibited refined dendritic structure. This study provides valuable insights for the tailored design of novel multi-phase RHEAs to achieve specific targeted properties.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01597-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01597-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design of BCC/FCC dual-solid solution refractory high-entropy alloys through CALPHAD, machine learning and experimental methods
Refractory high-entropy alloys (RHEAs) typically exhibit a body-centered cubic (BCC) structure with excellent strength but poor ductility, which limits their practical applications. In this study, we designed BCC/FCC dual-phase RHEAs through phase diagram calculations and neural network modeling. The analysis of the binary phase formation relationships among alloying elements enabled the preliminary screening and inclusion of 13 liquid-phase-separated BCC/FCC dual-phase RHEAs in the training dataset for the machine learning model. Two strategic binary classifications of this dataset were conducted on HEAs to identify their “multiphase” and “solid solution” structures. Consequently, two neural network models were trained, achieving accuracies of 89.52% and 89.83%, respectively. These models predicted 51 BCC/FCC dual-phase RHEAs among 504 novel RHEAs, representing the first successful compositional design of metastable BCC/FCC dual-phase RHEAs. The arc-melted alloys exhibited refined dendritic structure. This study provides valuable insights for the tailored design of novel multi-phase RHEAs to achieve specific targeted properties.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.