Lianyou Jing;Zhekai Xue;Chengbing He;Tonghui Zheng;Xingyu Cao
{"title":"基于OTFS水声通信系统干扰重构的直接自适应Turbo均衡","authors":"Lianyou Jing;Zhekai Xue;Chengbing He;Tonghui Zheng;Xingyu Cao","doi":"10.1109/JOE.2025.3531992","DOIUrl":null,"url":null,"abstract":"Orthogonal time frequency space (OTFS) modulation has recently gained recognition as a promising modulation scheme for high-mobility communication systems. It offers significant advantages in terms of error performance compared to orthogonal frequency division multiplexing in time-varying channels. In this article, we apply OTFS modulation to mobile underwater acoustic (UWA) communication. We propose an adaptive turbo equalization technique with a 2-D decision feedback equalizer to address the issue of 2-D interference. To mitigate the performance degradation caused by phase flipping and circular convolution in the delay-Doppler domain, we further propose a 2-D DA-TEQ based on interference reconstruction. An adaptive channel estimation based on the improved proportionate normalized least mean squares algorithm is proposed to reconstruct the interference. To validate the proposed OTFS UWA communication schemes, a lake experiment was conducted in Danjiangkou Lake, Henan, China, in July 2022. The experimental results demonstrate that the proposed scheme achieves satisfactory performance at a speed of 4.5 knots, with a data rate of 5.79 kbps. This experiment confirms the effectiveness of OTFS modulation for mobile UWA communication.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1469-1482"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Direct-Adaptive Turbo Equalization Based on Interference Reconstruction for OTFS Underwater Acoustic Communication System\",\"authors\":\"Lianyou Jing;Zhekai Xue;Chengbing He;Tonghui Zheng;Xingyu Cao\",\"doi\":\"10.1109/JOE.2025.3531992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Orthogonal time frequency space (OTFS) modulation has recently gained recognition as a promising modulation scheme for high-mobility communication systems. It offers significant advantages in terms of error performance compared to orthogonal frequency division multiplexing in time-varying channels. In this article, we apply OTFS modulation to mobile underwater acoustic (UWA) communication. We propose an adaptive turbo equalization technique with a 2-D decision feedback equalizer to address the issue of 2-D interference. To mitigate the performance degradation caused by phase flipping and circular convolution in the delay-Doppler domain, we further propose a 2-D DA-TEQ based on interference reconstruction. An adaptive channel estimation based on the improved proportionate normalized least mean squares algorithm is proposed to reconstruct the interference. To validate the proposed OTFS UWA communication schemes, a lake experiment was conducted in Danjiangkou Lake, Henan, China, in July 2022. The experimental results demonstrate that the proposed scheme achieves satisfactory performance at a speed of 4.5 knots, with a data rate of 5.79 kbps. This experiment confirms the effectiveness of OTFS modulation for mobile UWA communication.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 2\",\"pages\":\"1469-1482\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937367/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937367/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Direct-Adaptive Turbo Equalization Based on Interference Reconstruction for OTFS Underwater Acoustic Communication System
Orthogonal time frequency space (OTFS) modulation has recently gained recognition as a promising modulation scheme for high-mobility communication systems. It offers significant advantages in terms of error performance compared to orthogonal frequency division multiplexing in time-varying channels. In this article, we apply OTFS modulation to mobile underwater acoustic (UWA) communication. We propose an adaptive turbo equalization technique with a 2-D decision feedback equalizer to address the issue of 2-D interference. To mitigate the performance degradation caused by phase flipping and circular convolution in the delay-Doppler domain, we further propose a 2-D DA-TEQ based on interference reconstruction. An adaptive channel estimation based on the improved proportionate normalized least mean squares algorithm is proposed to reconstruct the interference. To validate the proposed OTFS UWA communication schemes, a lake experiment was conducted in Danjiangkou Lake, Henan, China, in July 2022. The experimental results demonstrate that the proposed scheme achieves satisfactory performance at a speed of 4.5 knots, with a data rate of 5.79 kbps. This experiment confirms the effectiveness of OTFS modulation for mobile UWA communication.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.