基于双耳矩阵和互信息约束损失的跨域水声声源定位算法

IF 3.8 2区 工程技术 Q1 ENGINEERING, CIVIL
Ruwei Li;Man Li;Qiuyan Li;Jiangqiao Li
{"title":"基于双耳矩阵和互信息约束损失的跨域水声声源定位算法","authors":"Ruwei Li;Man Li;Qiuyan Li;Jiangqiao Li","doi":"10.1109/JOE.2024.3516204","DOIUrl":null,"url":null,"abstract":"The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1419-1428"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-Domain Underwater Sound Source Localization Algorithm Based on Binaural Matrix and Mutual Information Constraint Loss\",\"authors\":\"Ruwei Li;Man Li;Qiuyan Li;Jiangqiao Li\",\"doi\":\"10.1109/JOE.2024.3516204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 2\",\"pages\":\"1419-1428\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918686/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10918686/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

现有的水声声源定位算法精度不理想,多数无法实现跨域定位。为了解决这些问题,提出了一种基于双耳矩阵和互信息约束损失的跨域水声声源定位算法。该算法首先基于双耳线索提取新的双耳矩阵特征,该特征不易受环境干扰,能够从接收信号中获得可靠的方向信息。然后,设计了一个基于互信息的约束损失来约束所提出的神经网络准确地学习不同域的共享表示。这确保了用于定位的高维表示具有更明确的方向方向性。最后,构建跨域水声声源定位网络,实现准确的跨域定位。实验结果表明,无论在同一域还是不同域,本文提出的算法都比比较算法具有更高的定位精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross-Domain Underwater Sound Source Localization Algorithm Based on Binaural Matrix and Mutual Information Constraint Loss
The accuracy of existing underwater sound source localization algorithms is unsatisfactory, and most of them cannot achieve cross-domain localization. To solve these problems, a cross-domain underwater sound source localization algorithm based on a binaural matrix and mutual information constraint loss is proposed. In this algorithm, a new binaural matrix feature is first extracted based on binaural cues, which is less susceptible to environmental interference and can obtain reliable direction information from received signals. Then, a constrained loss based on mutual information is designed to constrain the proposed neural network to accurately learn the shared representations of different domains. This ensures that the high-dimensional representations used for localization have more explicit orientation directionality. Finally, a cross-domain underwater sound source localization network is constructed to achieve accurate cross-domain localization. Experimental results indicate that the algorithm proposed in this study has a higher localization accuracy than comparative algorithms, both in the same domain and in different domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Journal of Oceanic Engineering
IEEE Journal of Oceanic Engineering 工程技术-工程:大洋
CiteScore
9.60
自引率
12.20%
发文量
86
审稿时长
12 months
期刊介绍: The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信