{"title":"基于两类区间观测器的不确定多智能体系统的一致控制","authors":"Yuchen Qian;Zhonghua Miao;Jin Zhou;Xiaojin Zhu","doi":"10.1109/TCYB.2025.3559110","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the multiagent robust consensus problem under model uncertainties, where the uncertain matrices and initial values are bounded by prior intervals. Based on the positive system theory, the related upper and lower dynamic systems are constructed to guarantee that the state value remains within a specified range. Subsequently, in accordance with the Lyapunov stability principle, the observation and consensus errors converge to zero, that is, the real states are reconstructed and consensus is achieved. Both local and neighborhood protocols, which are utilized to realize robust consensus, are presented. Notably, the proposed methods increase the design freedom and eliminate the Metzler constraint on the error matrix by introducing two novel parametric matrices. Without loss of generality, the topology in this article is assumed to contain a directed spanning tree, which can be directly degenerated to the undirected graph. Finally, numerical simulations validating the theoretical results are described.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 6","pages":"2535-2545"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Consensus Control of Uncertain Multiagent Systems Based on Two Types of Interval Observers\",\"authors\":\"Yuchen Qian;Zhonghua Miao;Jin Zhou;Xiaojin Zhu\",\"doi\":\"10.1109/TCYB.2025.3559110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate the multiagent robust consensus problem under model uncertainties, where the uncertain matrices and initial values are bounded by prior intervals. Based on the positive system theory, the related upper and lower dynamic systems are constructed to guarantee that the state value remains within a specified range. Subsequently, in accordance with the Lyapunov stability principle, the observation and consensus errors converge to zero, that is, the real states are reconstructed and consensus is achieved. Both local and neighborhood protocols, which are utilized to realize robust consensus, are presented. Notably, the proposed methods increase the design freedom and eliminate the Metzler constraint on the error matrix by introducing two novel parametric matrices. Without loss of generality, the topology in this article is assumed to contain a directed spanning tree, which can be directly degenerated to the undirected graph. Finally, numerical simulations validating the theoretical results are described.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 6\",\"pages\":\"2535-2545\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970248/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970248/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On Consensus Control of Uncertain Multiagent Systems Based on Two Types of Interval Observers
In this article, we investigate the multiagent robust consensus problem under model uncertainties, where the uncertain matrices and initial values are bounded by prior intervals. Based on the positive system theory, the related upper and lower dynamic systems are constructed to guarantee that the state value remains within a specified range. Subsequently, in accordance with the Lyapunov stability principle, the observation and consensus errors converge to zero, that is, the real states are reconstructed and consensus is achieved. Both local and neighborhood protocols, which are utilized to realize robust consensus, are presented. Notably, the proposed methods increase the design freedom and eliminate the Metzler constraint on the error matrix by introducing two novel parametric matrices. Without loss of generality, the topology in this article is assumed to contain a directed spanning tree, which can be directly degenerated to the undirected graph. Finally, numerical simulations validating the theoretical results are described.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.