{"title":"基于超图变换的关联信息增强图异常检测","authors":"Changqin Huang;Chengling Gao;Ming Li;Yongzhi Li;Xizhe Wang;Yunliang Jiang;Xiaodi Huang","doi":"10.1109/TCYB.2025.3558941","DOIUrl":null,"url":null,"abstract":"Graph anomaly detection (GAD) has attracted increasing interest due to its critical role in diverse real-world applications. Graph neural networks (GNNs) offer a promising avenue for GAD, leveraging their exceptional capacity to model complex graph structures and relationships. However, existing GNN-based models encounter challenges in addressing the GAD’s fundamental issue—anomaly camouflage, where anomalies mimic normal instances, leading to indistinguishable features. In this article, we propose a novel approach, termed correlation information enhanced GAD (CIE-GAD). Specifically, drawing on the observation that the distribution of homophilic and heterophilic edges differs between abnormal and normal samples, we construct a hypergraph to learn the co-occurrence relationships among adjacent edges. By enhancing the extraction of sample correlation information, we effectively tackle feature similarity caused by anomaly camouflage, thereby enhancing the performance of GAD. Furthermore, we develop a spectral convolution mechanism based on node-level attention fusion, enabling the capture of multifrequency signals. This module performs adaptive fusion tailored to the unique frequency information requirements of each node, mitigating the local heterophily problem. Extensive experiments on various real-world GAD datasets demonstrate that the proposed CIE-GAD outperforms state-of-the-art methods. Notably, our approach achieves AUC-PR improvements of up to 3.47%, with an average gain of 1.5%, demonstrating its effectiveness in detecting anomalies in graph data.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 6","pages":"2865-2878"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation Information Enhanced Graph Anomaly Detection via Hypergraph Transformation\",\"authors\":\"Changqin Huang;Chengling Gao;Ming Li;Yongzhi Li;Xizhe Wang;Yunliang Jiang;Xiaodi Huang\",\"doi\":\"10.1109/TCYB.2025.3558941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph anomaly detection (GAD) has attracted increasing interest due to its critical role in diverse real-world applications. Graph neural networks (GNNs) offer a promising avenue for GAD, leveraging their exceptional capacity to model complex graph structures and relationships. However, existing GNN-based models encounter challenges in addressing the GAD’s fundamental issue—anomaly camouflage, where anomalies mimic normal instances, leading to indistinguishable features. In this article, we propose a novel approach, termed correlation information enhanced GAD (CIE-GAD). Specifically, drawing on the observation that the distribution of homophilic and heterophilic edges differs between abnormal and normal samples, we construct a hypergraph to learn the co-occurrence relationships among adjacent edges. By enhancing the extraction of sample correlation information, we effectively tackle feature similarity caused by anomaly camouflage, thereby enhancing the performance of GAD. Furthermore, we develop a spectral convolution mechanism based on node-level attention fusion, enabling the capture of multifrequency signals. This module performs adaptive fusion tailored to the unique frequency information requirements of each node, mitigating the local heterophily problem. Extensive experiments on various real-world GAD datasets demonstrate that the proposed CIE-GAD outperforms state-of-the-art methods. Notably, our approach achieves AUC-PR improvements of up to 3.47%, with an average gain of 1.5%, demonstrating its effectiveness in detecting anomalies in graph data.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 6\",\"pages\":\"2865-2878\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10969849/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10969849/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Correlation Information Enhanced Graph Anomaly Detection via Hypergraph Transformation
Graph anomaly detection (GAD) has attracted increasing interest due to its critical role in diverse real-world applications. Graph neural networks (GNNs) offer a promising avenue for GAD, leveraging their exceptional capacity to model complex graph structures and relationships. However, existing GNN-based models encounter challenges in addressing the GAD’s fundamental issue—anomaly camouflage, where anomalies mimic normal instances, leading to indistinguishable features. In this article, we propose a novel approach, termed correlation information enhanced GAD (CIE-GAD). Specifically, drawing on the observation that the distribution of homophilic and heterophilic edges differs between abnormal and normal samples, we construct a hypergraph to learn the co-occurrence relationships among adjacent edges. By enhancing the extraction of sample correlation information, we effectively tackle feature similarity caused by anomaly camouflage, thereby enhancing the performance of GAD. Furthermore, we develop a spectral convolution mechanism based on node-level attention fusion, enabling the capture of multifrequency signals. This module performs adaptive fusion tailored to the unique frequency information requirements of each node, mitigating the local heterophily problem. Extensive experiments on various real-world GAD datasets demonstrate that the proposed CIE-GAD outperforms state-of-the-art methods. Notably, our approach achieves AUC-PR improvements of up to 3.47%, with an average gain of 1.5%, demonstrating its effectiveness in detecting anomalies in graph data.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.