具有顺应性、稳定性、精确控制和高负载能力的仿生软硬混合水下抓手

IF 9.4 1区 计算机科学 Q1 ROBOTICS
Fei Suo;Xiaolong Hui;Peixin Hua;Xuejian Bai;Jin Ma;Min Tan;Yu Wang
{"title":"具有顺应性、稳定性、精确控制和高负载能力的仿生软硬混合水下抓手","authors":"Fei Suo;Xiaolong Hui;Peixin Hua;Xuejian Bai;Jin Ma;Min Tan;Yu Wang","doi":"10.1109/TRO.2025.3562458","DOIUrl":null,"url":null,"abstract":"The complex underwater environment presents numerous challenges for the design of soft grippers, which often suffer from limited load capacity, poor stability, low portability, and imprecise control. This article proposes a novel rigid-soft hybrid gripper specifically designed for underwater use. The gripper's finger is constructed from silicone, reinforced with a multilink rigid exoskeleton on the outside, and actuated by tendons. This design provides three key advantages: compliance (capable of handling fragile objects such as a piece of tofu), heavy lifting (demonstrated by lifting an 80-kg barbell with three fingers), and precise, stable operation (the hybrid gripper maintains its shape despite water flow disturbances). In addition, the gripper is compact and lightweight, with the driving system powered by just four 23-g servo motors, making it easy to mount on various underwater robots. To enable precise control, both specialized kinematic and mechanics models were developed, allowing accurate predictions of the relationships among tendon displacement, exoskeleton deformation, soft material deformation, and tendon tension. This study thoroughly considers the challenges of underwater environments, offering new insights for advancing the field of underwater soft grasping.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"3099-3112"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Biomimetic Rigid-Soft Hybrid Underwater Gripper With Compliance, Stability, Precise Control, and High Load Capacity\",\"authors\":\"Fei Suo;Xiaolong Hui;Peixin Hua;Xuejian Bai;Jin Ma;Min Tan;Yu Wang\",\"doi\":\"10.1109/TRO.2025.3562458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex underwater environment presents numerous challenges for the design of soft grippers, which often suffer from limited load capacity, poor stability, low portability, and imprecise control. This article proposes a novel rigid-soft hybrid gripper specifically designed for underwater use. The gripper's finger is constructed from silicone, reinforced with a multilink rigid exoskeleton on the outside, and actuated by tendons. This design provides three key advantages: compliance (capable of handling fragile objects such as a piece of tofu), heavy lifting (demonstrated by lifting an 80-kg barbell with three fingers), and precise, stable operation (the hybrid gripper maintains its shape despite water flow disturbances). In addition, the gripper is compact and lightweight, with the driving system powered by just four 23-g servo motors, making it easy to mount on various underwater robots. To enable precise control, both specialized kinematic and mechanics models were developed, allowing accurate predictions of the relationships among tendon displacement, exoskeleton deformation, soft material deformation, and tendon tension. This study thoroughly considers the challenges of underwater environments, offering new insights for advancing the field of underwater soft grasping.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"3099-3112\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970069/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970069/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

复杂的水下环境对软抓取器的设计提出了诸多挑战,软抓取器的承载能力有限,稳定性差,便携性差,控制精度不高。本文提出了一种专为水下使用而设计的新型刚软混合夹持器。抓手的手指由硅胶制成,在外部用多链接刚性外骨骼加强,并由肌腱驱动。这种设计提供了三个关键优势:顺应性(能够处理易碎的物体,如一块豆腐),重举起(用三个手指举起80公斤的杠铃),以及精确,稳定的操作(混合夹具在水流干扰下保持其形状)。此外,抓手结构紧凑,重量轻,驱动系统仅由四个23克伺服电机驱动,使其易于安装在各种水下机器人上。为了实现精确控制,开发了专门的运动学和力学模型,可以准确预测肌腱位移,外骨骼变形,软材料变形和肌腱张力之间的关系。本研究充分考虑了水下环境的挑战,为推进水下软抓取领域提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Biomimetic Rigid-Soft Hybrid Underwater Gripper With Compliance, Stability, Precise Control, and High Load Capacity
The complex underwater environment presents numerous challenges for the design of soft grippers, which often suffer from limited load capacity, poor stability, low portability, and imprecise control. This article proposes a novel rigid-soft hybrid gripper specifically designed for underwater use. The gripper's finger is constructed from silicone, reinforced with a multilink rigid exoskeleton on the outside, and actuated by tendons. This design provides three key advantages: compliance (capable of handling fragile objects such as a piece of tofu), heavy lifting (demonstrated by lifting an 80-kg barbell with three fingers), and precise, stable operation (the hybrid gripper maintains its shape despite water flow disturbances). In addition, the gripper is compact and lightweight, with the driving system powered by just four 23-g servo motors, making it easy to mount on various underwater robots. To enable precise control, both specialized kinematic and mechanics models were developed, allowing accurate predictions of the relationships among tendon displacement, exoskeleton deformation, soft material deformation, and tendon tension. This study thoroughly considers the challenges of underwater environments, offering new insights for advancing the field of underwater soft grasping.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信