Adailton Gomes Pereira;Gustavo Franco Barbosa;Moacir Godinho Filho;Sidney Bruce Shiki;Andrea Lago da Silva
{"title":"基于挤压的增材制造质量控制:机器学习方法综述","authors":"Adailton Gomes Pereira;Gustavo Franco Barbosa;Moacir Godinho Filho;Sidney Bruce Shiki;Andrea Lago da Silva","doi":"10.1109/TCYB.2025.3558515","DOIUrl":null,"url":null,"abstract":"Additive manufacturing (AM) revolutionizes product creation with its unique layer-by-layer construction method but faces obstacles in widespread industrial use due to quality assurance and defect challenges. Integrating machine learning (ML) into AM quality control (QC) systems presents a viable solution, utilizing ML’s ability to autonomously detect patterns and extract important data, reducing the reliance on manual intervention. This study conducts an in-depth literature review to scrutinize the role of ML in augmenting QC mechanisms within extrusion-based AM processes. Our primary objective is to pinpoint ML models that excel in monitoring manufacturing activities and facilitating instantaneous defect corrections via parameter adjustments. Our analysis highlights the efficacy of convolutional neural networks (CNNs) models in defect detection, leveraging camera-based systems for an in-depth examination of printed parts. For 1-D data processing, support vector machines (SVMs) and long short-term memory (LSTM) networks have shown significant application and effectiveness. Furthermore, the study classifies various sensors and defects that can effectively benefit from ML-driven QC approaches. Our findings accentuate the essential role of ML, especially CNNs, in detecting and rectifying production flaws and also detail the synergy between different sensor technologies in creating a comprehensive monitoring framework. By integrating ML with a multisensor approach and employing real-time corrective strategies, such as dynamic parameter adjustments and the use of advanced control systems, this research underscores ML’s transformative potential in elevating AM QC. Thus, our contribution lays the groundwork for harnessing ML technologies to ensure superior quality parts production in AM, paving the way for its broader industrial adoption.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 6","pages":"2522-2534"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality Control in Extrusion-Based Additive Manufacturing: A Review of Machine Learning Approaches\",\"authors\":\"Adailton Gomes Pereira;Gustavo Franco Barbosa;Moacir Godinho Filho;Sidney Bruce Shiki;Andrea Lago da Silva\",\"doi\":\"10.1109/TCYB.2025.3558515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing (AM) revolutionizes product creation with its unique layer-by-layer construction method but faces obstacles in widespread industrial use due to quality assurance and defect challenges. Integrating machine learning (ML) into AM quality control (QC) systems presents a viable solution, utilizing ML’s ability to autonomously detect patterns and extract important data, reducing the reliance on manual intervention. This study conducts an in-depth literature review to scrutinize the role of ML in augmenting QC mechanisms within extrusion-based AM processes. Our primary objective is to pinpoint ML models that excel in monitoring manufacturing activities and facilitating instantaneous defect corrections via parameter adjustments. Our analysis highlights the efficacy of convolutional neural networks (CNNs) models in defect detection, leveraging camera-based systems for an in-depth examination of printed parts. For 1-D data processing, support vector machines (SVMs) and long short-term memory (LSTM) networks have shown significant application and effectiveness. Furthermore, the study classifies various sensors and defects that can effectively benefit from ML-driven QC approaches. Our findings accentuate the essential role of ML, especially CNNs, in detecting and rectifying production flaws and also detail the synergy between different sensor technologies in creating a comprehensive monitoring framework. By integrating ML with a multisensor approach and employing real-time corrective strategies, such as dynamic parameter adjustments and the use of advanced control systems, this research underscores ML’s transformative potential in elevating AM QC. Thus, our contribution lays the groundwork for harnessing ML technologies to ensure superior quality parts production in AM, paving the way for its broader industrial adoption.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 6\",\"pages\":\"2522-2534\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10970054/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10970054/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Quality Control in Extrusion-Based Additive Manufacturing: A Review of Machine Learning Approaches
Additive manufacturing (AM) revolutionizes product creation with its unique layer-by-layer construction method but faces obstacles in widespread industrial use due to quality assurance and defect challenges. Integrating machine learning (ML) into AM quality control (QC) systems presents a viable solution, utilizing ML’s ability to autonomously detect patterns and extract important data, reducing the reliance on manual intervention. This study conducts an in-depth literature review to scrutinize the role of ML in augmenting QC mechanisms within extrusion-based AM processes. Our primary objective is to pinpoint ML models that excel in monitoring manufacturing activities and facilitating instantaneous defect corrections via parameter adjustments. Our analysis highlights the efficacy of convolutional neural networks (CNNs) models in defect detection, leveraging camera-based systems for an in-depth examination of printed parts. For 1-D data processing, support vector machines (SVMs) and long short-term memory (LSTM) networks have shown significant application and effectiveness. Furthermore, the study classifies various sensors and defects that can effectively benefit from ML-driven QC approaches. Our findings accentuate the essential role of ML, especially CNNs, in detecting and rectifying production flaws and also detail the synergy between different sensor technologies in creating a comprehensive monitoring framework. By integrating ML with a multisensor approach and employing real-time corrective strategies, such as dynamic parameter adjustments and the use of advanced control systems, this research underscores ML’s transformative potential in elevating AM QC. Thus, our contribution lays the groundwork for harnessing ML technologies to ensure superior quality parts production in AM, paving the way for its broader industrial adoption.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.