{"title":"基于宏观行为的分层强化学习","authors":"Hao Jiang, Gongju Wang, Shengze Li, Jieyuan Zhang, Long Yan, Xinhai Xu","doi":"10.1007/s40747-025-01895-9","DOIUrl":null,"url":null,"abstract":"<p>The large action space is a key challenge in reinforcement learning. Although hierarchical methods have been proven to be effective in addressing this issue, they are not fully explored. This paper combines domain knowledge with hierarchical concepts to propose a novel Hierarchical Reinforcement Learning framework based on macro actions (HRL-MA). This framework includes a macro action mapping model that abstracts sequences of micro actions into macro actions, thereby simplifying the decision-making process. Macro actions are divided into two categories: combat macro actions (CMA) and non-combat macro actions (NO-CMA). NO-CMA are driven by decision tree-based logical rules and provide conditions for the execution of CMA. CMA form the action space of the reinforcement learning algorithm, which dynamically selects actions based on the current state. Comprehensive tests on the StarCraft II maps Simple64 and AbyssalReefLE demonstrate that the HRL-MA framework exhibits superior performance, achieving higher win rates compared to baseline algorithms. Furthermore, in mini-game scenarios, HRL-MA consistently outperforms baseline algorithms in terms of reward scores. The findings highlight the effectiveness of integrating hierarchical structures and macro actions in reinforcement learning to manage complex decision-making tasks in environments with large action spaces.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"17 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical reinforcement learning based on macro actions\",\"authors\":\"Hao Jiang, Gongju Wang, Shengze Li, Jieyuan Zhang, Long Yan, Xinhai Xu\",\"doi\":\"10.1007/s40747-025-01895-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The large action space is a key challenge in reinforcement learning. Although hierarchical methods have been proven to be effective in addressing this issue, they are not fully explored. This paper combines domain knowledge with hierarchical concepts to propose a novel Hierarchical Reinforcement Learning framework based on macro actions (HRL-MA). This framework includes a macro action mapping model that abstracts sequences of micro actions into macro actions, thereby simplifying the decision-making process. Macro actions are divided into two categories: combat macro actions (CMA) and non-combat macro actions (NO-CMA). NO-CMA are driven by decision tree-based logical rules and provide conditions for the execution of CMA. CMA form the action space of the reinforcement learning algorithm, which dynamically selects actions based on the current state. Comprehensive tests on the StarCraft II maps Simple64 and AbyssalReefLE demonstrate that the HRL-MA framework exhibits superior performance, achieving higher win rates compared to baseline algorithms. Furthermore, in mini-game scenarios, HRL-MA consistently outperforms baseline algorithms in terms of reward scores. The findings highlight the effectiveness of integrating hierarchical structures and macro actions in reinforcement learning to manage complex decision-making tasks in environments with large action spaces.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-025-01895-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-025-01895-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Hierarchical reinforcement learning based on macro actions
The large action space is a key challenge in reinforcement learning. Although hierarchical methods have been proven to be effective in addressing this issue, they are not fully explored. This paper combines domain knowledge with hierarchical concepts to propose a novel Hierarchical Reinforcement Learning framework based on macro actions (HRL-MA). This framework includes a macro action mapping model that abstracts sequences of micro actions into macro actions, thereby simplifying the decision-making process. Macro actions are divided into two categories: combat macro actions (CMA) and non-combat macro actions (NO-CMA). NO-CMA are driven by decision tree-based logical rules and provide conditions for the execution of CMA. CMA form the action space of the reinforcement learning algorithm, which dynamically selects actions based on the current state. Comprehensive tests on the StarCraft II maps Simple64 and AbyssalReefLE demonstrate that the HRL-MA framework exhibits superior performance, achieving higher win rates compared to baseline algorithms. Furthermore, in mini-game scenarios, HRL-MA consistently outperforms baseline algorithms in terms of reward scores. The findings highlight the effectiveness of integrating hierarchical structures and macro actions in reinforcement learning to manage complex decision-making tasks in environments with large action spaces.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.