{"title":"概率粒子滤波锚定(PPFA):具有声光外感受传感器的自主水下航行器语义世界建模的新视角","authors":"Alberto Topini;Alessandro Ridolfi","doi":"10.1109/JOE.2024.3492537","DOIUrl":null,"url":null,"abstract":"Creating an accurate world model of the scenario where an autonomous underwater vehicle is navigating can be considered a crucial stage for understanding the surrounding environment. As a result, the targets detected by an automatic target recognition (ATR) architecture alongside their localized positions, must be handled, selected, and filtered to get a symbolic representation of the underwater context. Even though the specific world modeling (WM) architecture may vary, current WM methodologies usually rely on the 3-D localization knowledge of the detected target by introducing a nonnegligible constraint. Motivated by the aforementioned considerations, a novel probabilistic particle filter anchoring (PPFA) approach has been developed. Starting from ATR 2-D results, the PPFA methodology aims at providing a semantic 3-D representation of the subsea environment by merging the upsides of both data association and object tracking, handled by a custom designed particle filter with resampling.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"1065-1086"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839132","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Particle Filter Anchoring (PPFA): A Novel Perspective in Semantic World Modeling for Autonomous Underwater Vehicles With Acoustic and Optical Exteroceptive Sensors\",\"authors\":\"Alberto Topini;Alessandro Ridolfi\",\"doi\":\"10.1109/JOE.2024.3492537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Creating an accurate world model of the scenario where an autonomous underwater vehicle is navigating can be considered a crucial stage for understanding the surrounding environment. As a result, the targets detected by an automatic target recognition (ATR) architecture alongside their localized positions, must be handled, selected, and filtered to get a symbolic representation of the underwater context. Even though the specific world modeling (WM) architecture may vary, current WM methodologies usually rely on the 3-D localization knowledge of the detected target by introducing a nonnegligible constraint. Motivated by the aforementioned considerations, a novel probabilistic particle filter anchoring (PPFA) approach has been developed. Starting from ATR 2-D results, the PPFA methodology aims at providing a semantic 3-D representation of the subsea environment by merging the upsides of both data association and object tracking, handled by a custom designed particle filter with resampling.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 2\",\"pages\":\"1065-1086\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839132\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839132/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839132/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Probabilistic Particle Filter Anchoring (PPFA): A Novel Perspective in Semantic World Modeling for Autonomous Underwater Vehicles With Acoustic and Optical Exteroceptive Sensors
Creating an accurate world model of the scenario where an autonomous underwater vehicle is navigating can be considered a crucial stage for understanding the surrounding environment. As a result, the targets detected by an automatic target recognition (ATR) architecture alongside their localized positions, must be handled, selected, and filtered to get a symbolic representation of the underwater context. Even though the specific world modeling (WM) architecture may vary, current WM methodologies usually rely on the 3-D localization knowledge of the detected target by introducing a nonnegligible constraint. Motivated by the aforementioned considerations, a novel probabilistic particle filter anchoring (PPFA) approach has been developed. Starting from ATR 2-D results, the PPFA methodology aims at providing a semantic 3-D representation of the subsea environment by merging the upsides of both data association and object tracking, handled by a custom designed particle filter with resampling.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.