Yan Liu;Yue Zhao;Bin Yu;Changsheng Zhu;Guanying Huo;Qingwu Li
{"title":"基于yolov8的改进浅海生物目标检测方法","authors":"Yan Liu;Yue Zhao;Bin Yu;Changsheng Zhu;Guanying Huo;Qingwu Li","doi":"10.1109/JOE.2025.3538954","DOIUrl":null,"url":null,"abstract":"With the development and utilization of marine resources, object detection in shallow sea environments becomes crucial. In real underwater environments, targets are often affected by motion blur or appear clustered, increasing detection difficulty. To address this problem, we propose an improved YOLOv8-based shallow sea creatures object detection method. We integrate receptive-field coordinate attention (RFCA) into the cross-stage partial bottleneck with the two convolutions (C2f) module of YOLOv8, creating the RFCA-enhanced C2f (C2f_RFCA). This enhancement improves feature extraction and fusion by leveraging multiscale receptive fields and refined feature fusion strategies, enabling better detection of blurred and occluded objects. The C2f_RFCA module captures both local and global features, enhancing detection accuracy in complex underwater scenarios. We additionally devised an improved dynamic head by substituting the deformable ConvNets version two (DCNv2) with DCNv3, forming dynamic head with DCNv3. This upgrade increases the flexibility of feature mapping and improves accuracy in detecting densely clustered objects by allowing adaptive receptive fields and enhancing boundary delineation. To evaluate the algorithm performance, we trained it on real-world underwater object detection data sets and conducted generalization experiments on detecting underwater objects, the underwater robot professional competition 2020 and underwater target detection and classification 2020 data sets. Experimental results show that, compared with YOLOv8n, our method increases mAP@0.5 by 1.9%, 1.7%, 4.3%, and 3.3%, and mAP@0.5:0.95 by 2.9%, 2.2%, 3.8%, and 5.0% in the four data sets. The proposed method significantly improves object detection accuracy for organisms in complex marine environments.","PeriodicalId":13191,"journal":{"name":"IEEE Journal of Oceanic Engineering","volume":"50 2","pages":"817-834"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved YOLOv8-Based Shallow Sea Creatures Object Detection Method\",\"authors\":\"Yan Liu;Yue Zhao;Bin Yu;Changsheng Zhu;Guanying Huo;Qingwu Li\",\"doi\":\"10.1109/JOE.2025.3538954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development and utilization of marine resources, object detection in shallow sea environments becomes crucial. In real underwater environments, targets are often affected by motion blur or appear clustered, increasing detection difficulty. To address this problem, we propose an improved YOLOv8-based shallow sea creatures object detection method. We integrate receptive-field coordinate attention (RFCA) into the cross-stage partial bottleneck with the two convolutions (C2f) module of YOLOv8, creating the RFCA-enhanced C2f (C2f_RFCA). This enhancement improves feature extraction and fusion by leveraging multiscale receptive fields and refined feature fusion strategies, enabling better detection of blurred and occluded objects. The C2f_RFCA module captures both local and global features, enhancing detection accuracy in complex underwater scenarios. We additionally devised an improved dynamic head by substituting the deformable ConvNets version two (DCNv2) with DCNv3, forming dynamic head with DCNv3. This upgrade increases the flexibility of feature mapping and improves accuracy in detecting densely clustered objects by allowing adaptive receptive fields and enhancing boundary delineation. To evaluate the algorithm performance, we trained it on real-world underwater object detection data sets and conducted generalization experiments on detecting underwater objects, the underwater robot professional competition 2020 and underwater target detection and classification 2020 data sets. Experimental results show that, compared with YOLOv8n, our method increases mAP@0.5 by 1.9%, 1.7%, 4.3%, and 3.3%, and mAP@0.5:0.95 by 2.9%, 2.2%, 3.8%, and 5.0% in the four data sets. The proposed method significantly improves object detection accuracy for organisms in complex marine environments.\",\"PeriodicalId\":13191,\"journal\":{\"name\":\"IEEE Journal of Oceanic Engineering\",\"volume\":\"50 2\",\"pages\":\"817-834\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Oceanic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937245/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Oceanic Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937245/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
An Improved YOLOv8-Based Shallow Sea Creatures Object Detection Method
With the development and utilization of marine resources, object detection in shallow sea environments becomes crucial. In real underwater environments, targets are often affected by motion blur or appear clustered, increasing detection difficulty. To address this problem, we propose an improved YOLOv8-based shallow sea creatures object detection method. We integrate receptive-field coordinate attention (RFCA) into the cross-stage partial bottleneck with the two convolutions (C2f) module of YOLOv8, creating the RFCA-enhanced C2f (C2f_RFCA). This enhancement improves feature extraction and fusion by leveraging multiscale receptive fields and refined feature fusion strategies, enabling better detection of blurred and occluded objects. The C2f_RFCA module captures both local and global features, enhancing detection accuracy in complex underwater scenarios. We additionally devised an improved dynamic head by substituting the deformable ConvNets version two (DCNv2) with DCNv3, forming dynamic head with DCNv3. This upgrade increases the flexibility of feature mapping and improves accuracy in detecting densely clustered objects by allowing adaptive receptive fields and enhancing boundary delineation. To evaluate the algorithm performance, we trained it on real-world underwater object detection data sets and conducted generalization experiments on detecting underwater objects, the underwater robot professional competition 2020 and underwater target detection and classification 2020 data sets. Experimental results show that, compared with YOLOv8n, our method increases mAP@0.5 by 1.9%, 1.7%, 4.3%, and 3.3%, and mAP@0.5:0.95 by 2.9%, 2.2%, 3.8%, and 5.0% in the four data sets. The proposed method significantly improves object detection accuracy for organisms in complex marine environments.
期刊介绍:
The IEEE Journal of Oceanic Engineering (ISSN 0364-9059) is the online-only quarterly publication of the IEEE Oceanic Engineering Society (IEEE OES). The scope of the Journal is the field of interest of the IEEE OES, which encompasses all aspects of science, engineering, and technology that address research, development, and operations pertaining to all bodies of water. This includes the creation of new capabilities and technologies from concept design through prototypes, testing, and operational systems to sense, explore, understand, develop, use, and responsibly manage natural resources.