公开的统计方法不能准确地估计作物的生产潜力

{"title":"公开的统计方法不能准确地估计作物的生产潜力","authors":"","doi":"10.1038/s43016-025-01166-3","DOIUrl":null,"url":null,"abstract":"Estimating yield potential and yield gaps is crucial for global food security. However, many studies rely on statistical methods that lack theoretical and empirical justification for their use. We show that well-validated crop models, combined with local weather and soil data, provide a more accurate assessment of production potential.","PeriodicalId":19090,"journal":{"name":"Nature Food","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Published statistical methods fail to accurately estimate crop production potential\",\"authors\":\"\",\"doi\":\"10.1038/s43016-025-01166-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating yield potential and yield gaps is crucial for global food security. However, many studies rely on statistical methods that lack theoretical and empirical justification for their use. We show that well-validated crop models, combined with local weather and soil data, provide a more accurate assessment of production potential.\",\"PeriodicalId\":19090,\"journal\":{\"name\":\"Nature Food\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43016-025-01166-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Food","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43016-025-01166-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

估计产量潜力和产量差距对全球粮食安全至关重要。然而,许多研究依赖于统计方法,而这些方法缺乏理论和经验依据。我们表明,经过充分验证的作物模型与当地天气和土壤数据相结合,可以更准确地评估生产潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Published statistical methods fail to accurately estimate crop production potential

Published statistical methods fail to accurately estimate crop production potential
Estimating yield potential and yield gaps is crucial for global food security. However, many studies rely on statistical methods that lack theoretical and empirical justification for their use. We show that well-validated crop models, combined with local weather and soil data, provide a more accurate assessment of production potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信