{"title":"基于深度强化学习损伤演化的冲击系统动态状态维护","authors":"Yudao Sun , Juan Yin","doi":"10.1016/j.ress.2025.111095","DOIUrl":null,"url":null,"abstract":"<div><div>In the industry domain, maintenance tasks and resources need to be allocated to industrial systems to avoid unplanned downtime. We explore the dynamic condition-based maintenance strategy for systems comprising multiple components, in which each component undergoes external shocks along with time and is maintained individually. For each component, random shocks arrive following a homogeneous Poisson process, and the evolution of the component’s state is characterized using a Markov process. The dynamic condition-based maintenance policy for the developed shock system, depicted as a Markov decision process, is introduced. To minimize the overall system cost, the maintenance optimization problem is discussed to determine the most cost-effective maintenance actions. A tailored advantage actor-critic algorithm in deep reinforcement learning is proposed to address the challenge of high dimensionality. Finally, numerical examples demonstrate the efficiency of the proposed method in searching for optimal maintenance actions and reducing maintenance costs.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"261 ","pages":"Article 111095"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic condition-based maintenance for shock systems based on damage evolutions using deep reinforcement learning\",\"authors\":\"Yudao Sun , Juan Yin\",\"doi\":\"10.1016/j.ress.2025.111095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the industry domain, maintenance tasks and resources need to be allocated to industrial systems to avoid unplanned downtime. We explore the dynamic condition-based maintenance strategy for systems comprising multiple components, in which each component undergoes external shocks along with time and is maintained individually. For each component, random shocks arrive following a homogeneous Poisson process, and the evolution of the component’s state is characterized using a Markov process. The dynamic condition-based maintenance policy for the developed shock system, depicted as a Markov decision process, is introduced. To minimize the overall system cost, the maintenance optimization problem is discussed to determine the most cost-effective maintenance actions. A tailored advantage actor-critic algorithm in deep reinforcement learning is proposed to address the challenge of high dimensionality. Finally, numerical examples demonstrate the efficiency of the proposed method in searching for optimal maintenance actions and reducing maintenance costs.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"261 \",\"pages\":\"Article 111095\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025002960\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002960","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Dynamic condition-based maintenance for shock systems based on damage evolutions using deep reinforcement learning
In the industry domain, maintenance tasks and resources need to be allocated to industrial systems to avoid unplanned downtime. We explore the dynamic condition-based maintenance strategy for systems comprising multiple components, in which each component undergoes external shocks along with time and is maintained individually. For each component, random shocks arrive following a homogeneous Poisson process, and the evolution of the component’s state is characterized using a Markov process. The dynamic condition-based maintenance policy for the developed shock system, depicted as a Markov decision process, is introduced. To minimize the overall system cost, the maintenance optimization problem is discussed to determine the most cost-effective maintenance actions. A tailored advantage actor-critic algorithm in deep reinforcement learning is proposed to address the challenge of high dimensionality. Finally, numerical examples demonstrate the efficiency of the proposed method in searching for optimal maintenance actions and reducing maintenance costs.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.