{"title":"饲料添加剂低分子量鸭血蛋白水解物对花角鱼肠道微生物群、抗氧化活性、体液免疫和炎症反应的影响","authors":"Pimpisut Manassila, Papungkorn Sangsawad, Surintorn Boonanuntanasarn, Jirawadee Kaewda, Pakpoom Boonchuen, Sirawich Limkul, Chatsirin Nakharuthai","doi":"10.1155/anu/9970984","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Food-derived bioactive peptides could serve as feed ingredients and/or feed additives. We investigated the health-promoting properties of low molecular weight duck blood protein hydrolysate (DBPH), fractionated by ultrafiltration with a 10 kDa molecular weight cut-off membrane, in flowerhorn fish. The analysis of molecular weight distribution revealed that the most common sizes of DBPH fell within the range of 3–7 kDa (39.68%), followed by >7–10 kDa (20.69%), 1–3 kDa (23.03%), and <1 kDa (9.00%). After 1 month of the feeding trial, fish fed with diets supplemented with 2% DBPH exhibited the highest growth, antioxidant activity, and humoral immune response enhancement under normal conditions. In addition, microbiome analysis confirmed that 2% DBPH possesses antimicrobial activity, as evidenced by the significant decrease in operational taxonomic units (OTUs) and alpha diversity indexes, including Chao1 and Shannon. Compared to the control group, fish that were fed with diets supplemented with 2% DBPH exhibited a significantly higher abundance of the genera Cetobacterium and Romboutsia, which could serve as indicators of the overall health and well-being of the fish. After a <i>Streptococcus agalactiae</i> challenge, fish fed with diets supplemented with 2% DBPH exhibited an enhanced ability to modulate inflammatory genes, including interleukin (IL)-1<i>β</i>, IL-6, CC, and CXC chemokine as well as antioxidant gene expression (superoxide dismutase (SOD) and catalase (CAT)). Overall, dietary supplementation with 2% DBPH could improve the overall health of the flowerhorn fish by ameliorating humoral immune response, alleviating oxidative stress, and strengthening resistance against <i>S. agalactiae</i>.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2025 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/9970984","citationCount":"0","resultStr":"{\"title\":\"Effects of Low Molecular Weight Duck Blood Protein Hydrolysate as a Feed Additive on the Intestinal Microbiome, Antioxidant Activity, and Humoral Immune and Inflammatory Responses in Flowerhorn Fish\",\"authors\":\"Pimpisut Manassila, Papungkorn Sangsawad, Surintorn Boonanuntanasarn, Jirawadee Kaewda, Pakpoom Boonchuen, Sirawich Limkul, Chatsirin Nakharuthai\",\"doi\":\"10.1155/anu/9970984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Food-derived bioactive peptides could serve as feed ingredients and/or feed additives. We investigated the health-promoting properties of low molecular weight duck blood protein hydrolysate (DBPH), fractionated by ultrafiltration with a 10 kDa molecular weight cut-off membrane, in flowerhorn fish. The analysis of molecular weight distribution revealed that the most common sizes of DBPH fell within the range of 3–7 kDa (39.68%), followed by >7–10 kDa (20.69%), 1–3 kDa (23.03%), and <1 kDa (9.00%). After 1 month of the feeding trial, fish fed with diets supplemented with 2% DBPH exhibited the highest growth, antioxidant activity, and humoral immune response enhancement under normal conditions. In addition, microbiome analysis confirmed that 2% DBPH possesses antimicrobial activity, as evidenced by the significant decrease in operational taxonomic units (OTUs) and alpha diversity indexes, including Chao1 and Shannon. Compared to the control group, fish that were fed with diets supplemented with 2% DBPH exhibited a significantly higher abundance of the genera Cetobacterium and Romboutsia, which could serve as indicators of the overall health and well-being of the fish. After a <i>Streptococcus agalactiae</i> challenge, fish fed with diets supplemented with 2% DBPH exhibited an enhanced ability to modulate inflammatory genes, including interleukin (IL)-1<i>β</i>, IL-6, CC, and CXC chemokine as well as antioxidant gene expression (superoxide dismutase (SOD) and catalase (CAT)). Overall, dietary supplementation with 2% DBPH could improve the overall health of the flowerhorn fish by ameliorating humoral immune response, alleviating oxidative stress, and strengthening resistance against <i>S. agalactiae</i>.</p>\\n </div>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/9970984\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/anu/9970984\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/9970984","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
Effects of Low Molecular Weight Duck Blood Protein Hydrolysate as a Feed Additive on the Intestinal Microbiome, Antioxidant Activity, and Humoral Immune and Inflammatory Responses in Flowerhorn Fish
Food-derived bioactive peptides could serve as feed ingredients and/or feed additives. We investigated the health-promoting properties of low molecular weight duck blood protein hydrolysate (DBPH), fractionated by ultrafiltration with a 10 kDa molecular weight cut-off membrane, in flowerhorn fish. The analysis of molecular weight distribution revealed that the most common sizes of DBPH fell within the range of 3–7 kDa (39.68%), followed by >7–10 kDa (20.69%), 1–3 kDa (23.03%), and <1 kDa (9.00%). After 1 month of the feeding trial, fish fed with diets supplemented with 2% DBPH exhibited the highest growth, antioxidant activity, and humoral immune response enhancement under normal conditions. In addition, microbiome analysis confirmed that 2% DBPH possesses antimicrobial activity, as evidenced by the significant decrease in operational taxonomic units (OTUs) and alpha diversity indexes, including Chao1 and Shannon. Compared to the control group, fish that were fed with diets supplemented with 2% DBPH exhibited a significantly higher abundance of the genera Cetobacterium and Romboutsia, which could serve as indicators of the overall health and well-being of the fish. After a Streptococcus agalactiae challenge, fish fed with diets supplemented with 2% DBPH exhibited an enhanced ability to modulate inflammatory genes, including interleukin (IL)-1β, IL-6, CC, and CXC chemokine as well as antioxidant gene expression (superoxide dismutase (SOD) and catalase (CAT)). Overall, dietary supplementation with 2% DBPH could improve the overall health of the flowerhorn fish by ameliorating humoral immune response, alleviating oxidative stress, and strengthening resistance against S. agalactiae.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.