Yingru Lu , Zhuang Cai , Dan Huang , Xuehao Yao , Qipeng Ma , Ding Chen
{"title":"层状页岩水力压裂界面裂缝扩展的动力学模拟与分析","authors":"Yingru Lu , Zhuang Cai , Dan Huang , Xuehao Yao , Qipeng Ma , Ding Chen","doi":"10.1016/j.compgeo.2025.107280","DOIUrl":null,"url":null,"abstract":"<div><div>Hydraulic fractures at the bedding interface in layered shale will give rise to various phenomena including penetration, diversion and offset which significantly influence the production of shale gas exploitation. It is persistent challenge to simulate the uncertain fracture propagation paths induced by hydraulic fracturing when encountering interfaces. In this study, an alternative peridynamic model is proposed to investigate the interfacial crack propagation by hydraulic fracturing in layered shale. The water pressure loading process is described through equivalently transforming the water pressure applied on fracture surfaces into the water pressure density on broken bonds. The interface model and its cracking criterion are derived by employing bilinear cohesive zone model, which effectively characterize the interactions between rocks with different properties on different sides of the bedding plane. The proposed model is validated through comparison with experimental results, and then is further employed to investigate the complex hydraulic fracture propagation near bedding interfaces. It is found that smaller angle between hydraulic fracturing direction and bedding may lead to better fracturing effects and higher gas extraction in layered shale.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"184 ","pages":"Article 107280"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peridynamic modeling and analysis of interfacial crack propagation by hydraulic fracturing in layered shale\",\"authors\":\"Yingru Lu , Zhuang Cai , Dan Huang , Xuehao Yao , Qipeng Ma , Ding Chen\",\"doi\":\"10.1016/j.compgeo.2025.107280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydraulic fractures at the bedding interface in layered shale will give rise to various phenomena including penetration, diversion and offset which significantly influence the production of shale gas exploitation. It is persistent challenge to simulate the uncertain fracture propagation paths induced by hydraulic fracturing when encountering interfaces. In this study, an alternative peridynamic model is proposed to investigate the interfacial crack propagation by hydraulic fracturing in layered shale. The water pressure loading process is described through equivalently transforming the water pressure applied on fracture surfaces into the water pressure density on broken bonds. The interface model and its cracking criterion are derived by employing bilinear cohesive zone model, which effectively characterize the interactions between rocks with different properties on different sides of the bedding plane. The proposed model is validated through comparison with experimental results, and then is further employed to investigate the complex hydraulic fracture propagation near bedding interfaces. It is found that smaller angle between hydraulic fracturing direction and bedding may lead to better fracturing effects and higher gas extraction in layered shale.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"184 \",\"pages\":\"Article 107280\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25002290\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25002290","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Peridynamic modeling and analysis of interfacial crack propagation by hydraulic fracturing in layered shale
Hydraulic fractures at the bedding interface in layered shale will give rise to various phenomena including penetration, diversion and offset which significantly influence the production of shale gas exploitation. It is persistent challenge to simulate the uncertain fracture propagation paths induced by hydraulic fracturing when encountering interfaces. In this study, an alternative peridynamic model is proposed to investigate the interfacial crack propagation by hydraulic fracturing in layered shale. The water pressure loading process is described through equivalently transforming the water pressure applied on fracture surfaces into the water pressure density on broken bonds. The interface model and its cracking criterion are derived by employing bilinear cohesive zone model, which effectively characterize the interactions between rocks with different properties on different sides of the bedding plane. The proposed model is validated through comparison with experimental results, and then is further employed to investigate the complex hydraulic fracture propagation near bedding interfaces. It is found that smaller angle between hydraulic fracturing direction and bedding may lead to better fracturing effects and higher gas extraction in layered shale.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.