具有互补纳米结构填料的铁电聚合物纳米复合材料的大电热制冷性能

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Min Zhao , Junyu Huang , Yu He , Tingfeng Li , Cuiping Xu , Peiqi Ji , Ziyi Xu , Xiaolei Li , Yiyu Tan , Aimei Zhang , Hong-Ling Cai , X.S. Wu
{"title":"具有互补纳米结构填料的铁电聚合物纳米复合材料的大电热制冷性能","authors":"Min Zhao ,&nbsp;Junyu Huang ,&nbsp;Yu He ,&nbsp;Tingfeng Li ,&nbsp;Cuiping Xu ,&nbsp;Peiqi Ji ,&nbsp;Ziyi Xu ,&nbsp;Xiaolei Li ,&nbsp;Yiyu Tan ,&nbsp;Aimei Zhang ,&nbsp;Hong-Ling Cai ,&nbsp;X.S. Wu","doi":"10.1016/j.mtphys.2025.101720","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocaloric (EC) refrigeration in nanocomposites provides sustainable heating and cooling through its excellent entropy change when applied or withdraw an electric field. Nonetheless, it's difficult to achieve a large EC performance under low electric fields since ferroelectrics have relatively low thermal conductivity and small diabatic temperature change. In this work, we design an EC nanocomposite by incorporating 12 %[0.68(BaZr<sub>0.2</sub>Ti<sub>0.8</sub>O<sub>3</sub>)-0.32(Ba<sub>0.7</sub>Ca<sub>0.3</sub>TiO<sub>3</sub>)] (BCZT) nanoparticles with significant ferroelectric properties and 7 %Boron Nitride nanosheets (BNNSs) with notable electrical insulation and ultra-high thermal conductivity into relaxor ferroelectric terpolymer P(VDF-TrFE-CFE), aiming to improve ECE performance and increase cooling power density of the nanocomposite. We attain an adiabatic temperature change (Δ<em>T</em>) of 8.85K, isothermal entropy change (Δ<em>S</em>) of 30.10J·kg<sup>−1</sup>·K<sup>−1</sup> and isothermal cooling energy density (<em>Q</em>) of up to 5.10 × 10<sup>7</sup> J·m<sup>−3</sup> under a low electric field of 80 MV/m by direct method, which is an order of magnitude larger than those of other EC materials reported so far. The introduced interfacial coupling effect between ceramic and terpolymer plays a very important role to ECE, which modulates their polarization, microscale electric-dipoles changes, and energy conversion behavior, simultaneously improves the cooling power density of nanocomposite. Furthermore, the heat transfer performance of nanocomposite is simulated using Finite-element method (FEM) to investigate their heat transfer properties based on the solid-state heat transfer theory. The phase-field simulation has demonstrated the nanocomposite still possesses impressive ferroelectric properties under the influence of elastic compressive strain based on time-dependent Landau-Ginzburg-Devonshire (TLGD) theory. This research is of significant importance for achieving precise thermal management of the next-generation microelectronic devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101720"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large electrocaloric refrigeration performance in ferroelectric polymer nanocomposite with complementary nano-structural fillers\",\"authors\":\"Min Zhao ,&nbsp;Junyu Huang ,&nbsp;Yu He ,&nbsp;Tingfeng Li ,&nbsp;Cuiping Xu ,&nbsp;Peiqi Ji ,&nbsp;Ziyi Xu ,&nbsp;Xiaolei Li ,&nbsp;Yiyu Tan ,&nbsp;Aimei Zhang ,&nbsp;Hong-Ling Cai ,&nbsp;X.S. Wu\",\"doi\":\"10.1016/j.mtphys.2025.101720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocaloric (EC) refrigeration in nanocomposites provides sustainable heating and cooling through its excellent entropy change when applied or withdraw an electric field. Nonetheless, it's difficult to achieve a large EC performance under low electric fields since ferroelectrics have relatively low thermal conductivity and small diabatic temperature change. In this work, we design an EC nanocomposite by incorporating 12 %[0.68(BaZr<sub>0.2</sub>Ti<sub>0.8</sub>O<sub>3</sub>)-0.32(Ba<sub>0.7</sub>Ca<sub>0.3</sub>TiO<sub>3</sub>)] (BCZT) nanoparticles with significant ferroelectric properties and 7 %Boron Nitride nanosheets (BNNSs) with notable electrical insulation and ultra-high thermal conductivity into relaxor ferroelectric terpolymer P(VDF-TrFE-CFE), aiming to improve ECE performance and increase cooling power density of the nanocomposite. We attain an adiabatic temperature change (Δ<em>T</em>) of 8.85K, isothermal entropy change (Δ<em>S</em>) of 30.10J·kg<sup>−1</sup>·K<sup>−1</sup> and isothermal cooling energy density (<em>Q</em>) of up to 5.10 × 10<sup>7</sup> J·m<sup>−3</sup> under a low electric field of 80 MV/m by direct method, which is an order of magnitude larger than those of other EC materials reported so far. The introduced interfacial coupling effect between ceramic and terpolymer plays a very important role to ECE, which modulates their polarization, microscale electric-dipoles changes, and energy conversion behavior, simultaneously improves the cooling power density of nanocomposite. Furthermore, the heat transfer performance of nanocomposite is simulated using Finite-element method (FEM) to investigate their heat transfer properties based on the solid-state heat transfer theory. The phase-field simulation has demonstrated the nanocomposite still possesses impressive ferroelectric properties under the influence of elastic compressive strain based on time-dependent Landau-Ginzburg-Devonshire (TLGD) theory. This research is of significant importance for achieving precise thermal management of the next-generation microelectronic devices.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"54 \",\"pages\":\"Article 101720\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000768\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000768","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米复合材料中的电热制冷(EC)通过其在施加或撤回电场时优异的熵变提供可持续的加热和冷却。然而,由于铁电体导热系数相对较低,非绝热温度变化较小,在低电场条件下很难实现大的EC性能。在这项工作中,我们设计了一种EC纳米复合材料,将具有显著铁电性能的12% [0.68(BaZr0.2Ti0.8O3)-0.32(Ba0.7Ca0.3TiO3)] (BCZT)纳米颗粒和具有显著电绝缘性和超高导热性的7%氮化硼纳米片(BNNSs)加入弛豫铁电三元聚合物P(VDF-TrFE-CFE)中,旨在提高ECE性能和提高纳米复合材料的冷却功率密度。在80 MV/m的低电场条件下,用直接法得到的绝热温度变化(ΔT)为8.85K,等温熵变(ΔS)为30.10J·kg - 1·K - 1,等温冷却能量密度(Q)高达5.10 × 107 J·m - 3,比目前报道的其他EC材料的冷却能量密度大一个数量级。陶瓷与三元共聚物之间引入的界面耦合效应对ECE起着非常重要的作用,它调节了它们的极化、微尺度电偶极子变化和能量转换行为,同时提高了纳米复合材料的冷却功率密度。在此基础上,基于固态传热理论,采用有限元方法对纳米复合材料的传热性能进行了模拟研究。基于时间相关的Landau-Ginzburg-Devonshire (TLGD)理论,相场模拟表明,在弹性压缩应变的影响下,纳米复合材料仍然具有令人印象深刻的铁电性能。该研究对实现下一代微电子器件的精确热管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Large electrocaloric refrigeration performance in ferroelectric polymer nanocomposite with complementary nano-structural fillers

Large electrocaloric refrigeration performance in ferroelectric polymer nanocomposite with complementary nano-structural fillers
Electrocaloric (EC) refrigeration in nanocomposites provides sustainable heating and cooling through its excellent entropy change when applied or withdraw an electric field. Nonetheless, it's difficult to achieve a large EC performance under low electric fields since ferroelectrics have relatively low thermal conductivity and small diabatic temperature change. In this work, we design an EC nanocomposite by incorporating 12 %[0.68(BaZr0.2Ti0.8O3)-0.32(Ba0.7Ca0.3TiO3)] (BCZT) nanoparticles with significant ferroelectric properties and 7 %Boron Nitride nanosheets (BNNSs) with notable electrical insulation and ultra-high thermal conductivity into relaxor ferroelectric terpolymer P(VDF-TrFE-CFE), aiming to improve ECE performance and increase cooling power density of the nanocomposite. We attain an adiabatic temperature change (ΔT) of 8.85K, isothermal entropy change (ΔS) of 30.10J·kg−1·K−1 and isothermal cooling energy density (Q) of up to 5.10 × 107 J·m−3 under a low electric field of 80 MV/m by direct method, which is an order of magnitude larger than those of other EC materials reported so far. The introduced interfacial coupling effect between ceramic and terpolymer plays a very important role to ECE, which modulates their polarization, microscale electric-dipoles changes, and energy conversion behavior, simultaneously improves the cooling power density of nanocomposite. Furthermore, the heat transfer performance of nanocomposite is simulated using Finite-element method (FEM) to investigate their heat transfer properties based on the solid-state heat transfer theory. The phase-field simulation has demonstrated the nanocomposite still possesses impressive ferroelectric properties under the influence of elastic compressive strain based on time-dependent Landau-Ginzburg-Devonshire (TLGD) theory. This research is of significant importance for achieving precise thermal management of the next-generation microelectronic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信