多项式Riordan数组中的周期性和循环矩阵

IF 1 3区 数学 Q1 MATHEMATICS
Nikolai A. Krylov
{"title":"多项式Riordan数组中的周期性和循环矩阵","authors":"Nikolai A. Krylov","doi":"10.1016/j.laa.2025.04.005","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Riordan arrays <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span>. These are infinite lower triangular matrices determined by the formal power series <span><math><mn>1</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> and a polynomial <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> of degree <em>d</em>. Columns of such a matrix are eventually periodic sequences with a period of <span><math><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, and circulant matrices are used to describe the long term behavior of such periodicity when the column's index grows indefinitely. We also discuss some combinatorially interesting sequences that appear through the corresponding A - and Z - sequences of such Riordan arrays.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"718 ","pages":"Pages 58-80"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodicity and circulant matrices in the Riordan array of a polynomial\",\"authors\":\"Nikolai A. Krylov\",\"doi\":\"10.1016/j.laa.2025.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider Riordan arrays <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>t</mi><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span>. These are infinite lower triangular matrices determined by the formal power series <span><math><mn>1</mn><mo>/</mo><mo>(</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>t</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> and a polynomial <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> of degree <em>d</em>. Columns of such a matrix are eventually periodic sequences with a period of <span><math><mi>d</mi><mo>+</mo><mn>1</mn></math></span>, and circulant matrices are used to describe the long term behavior of such periodicity when the column's index grows indefinitely. We also discuss some combinatorially interesting sequences that appear through the corresponding A - and Z - sequences of such Riordan arrays.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"718 \",\"pages\":\"Pages 58-80\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001557\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001557","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑赖尔登数组(1/(1−td+1),tp(t))。这些是由形式幂级数1/(1 - td+1)和d次多项式p(t)决定的无限低三角矩阵。这样一个矩阵的列最终是周期为d+1的周期序列,循环矩阵用于描述当列的索引无限增长时这种周期性的长期行为。我们还讨论了一些组合上有趣的序列,它们通过这种Riordan数组的相应A -和Z -序列出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodicity and circulant matrices in the Riordan array of a polynomial
We consider Riordan arrays (1/(1td+1),tp(t)). These are infinite lower triangular matrices determined by the formal power series 1/(1td+1) and a polynomial p(t) of degree d. Columns of such a matrix are eventually periodic sequences with a period of d+1, and circulant matrices are used to describe the long term behavior of such periodicity when the column's index grows indefinitely. We also discuss some combinatorially interesting sequences that appear through the corresponding A - and Z - sequences of such Riordan arrays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信