{"title":"3-聚焦乳糖通过调节小鼠肠道微生物来源的泛酸来预防非酒精性脂肪性肝病","authors":"Bei Liu, Ningning He, Hui Li, Zizhen Yang, Yichen Lin, Xiaoyu Wu, Haoyan Zhang, Ziheng Zhang, Zishuai Zhang, Yu Tian, Zhinan Wu, Yuanqiang Zou, Jixing Peng, Shangyong Li","doi":"10.1021/acs.jafc.5c00079","DOIUrl":null,"url":null,"abstract":"Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"6 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice\",\"authors\":\"Bei Liu, Ningning He, Hui Li, Zizhen Yang, Yichen Lin, Xiaoyu Wu, Haoyan Zhang, Ziheng Zhang, Zishuai Zhang, Yu Tian, Zhinan Wu, Yuanqiang Zou, Jixing Peng, Shangyong Li\",\"doi\":\"10.1021/acs.jafc.5c00079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.5c00079\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.5c00079","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
3-Fucosyllactose Prevents Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota-Derived Pantothenate in Mice
Nonalcoholic fatty liver disease (NAFLD) is a growing global health threat. Human milk oligosaccharides (HMOs) exhibit prebiotic properties that may alleviate NAFLD progression. Herein, our study demonstrates that 3-fucosyllactose (3-FL), a distinctive and crucial HMO, significantly attenuates body weight gain, enhances hepatic lipid metabolism, and reduces inflammation in a high-fat diet (HFD)-induced NAFLD mouse model. These findings suggest its potential as a dietary supplement for preventing and alleviating NAFLD progression. Subsequently, fecal metagenomic and nontargeted metabolomics analyses revealed that 3-FL treatment significantly alleviated HFD-induced gut microbiota dysbiosis, with a specific enhancement of the pantothenate (vitamin B5) metabolic pathways. Our targeted metabolite analysis further revealed a significant increase in both hepatic and fecal pantothenate concentrations, which contributed to the enhancement of the coenzyme A (CoA)-mediated lipid metabolism pathway. Furthermore, the subsequent population cohort analyses revealed a significant correlation between serum pantothenate levels and the progression of NAFLD, thereby reinforcing its candidacy as a noninvasive diagnostic biomarker. These findings show that 3-FL acts as an effective prebiotic to alleviate NAFLD symptoms, in part by enhancing the gut microbiota-mediated pantothenate/CoA metabolic pathway.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.