Stefano Ippolito, Francesca Urban, Paolo Samorì, Jonathan E. Spanier, Yury Gogotsi
{"title":"ti基MXene光电器件的奇异光热响应","authors":"Stefano Ippolito, Francesca Urban, Paolo Samorì, Jonathan E. Spanier, Yury Gogotsi","doi":"10.1002/aelm.202500017","DOIUrl":null,"url":null,"abstract":"MXenes represent one-of-a-kind materials to devise radically novel technologies and achieve breakthroughs in optoelectronics. To exploit their full potential, precise control over the influence of stoichiometry on optical and thermal properties, as well as device performance, must be achieved. Here, the characteristics of optoelectronic devices based on Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> and Ti<sub>2</sub>CT<i><sub>x</sub></i> thin films are uncovered, highlighting the striking difference in their photothermal responses to laser irradiation under different experimental conditions. Even though their absorption coefficients at 450 nm are comparable, the thermal excitation and relaxation phenomena display markedly different kinetics: Ti<sub>2</sub>CT<i><sub>x</sub></i> devices show a strong asymmetry during the heating-cooling cycle, with the heat dissipation kinetics being three orders of magnitude slower than Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> and strongly influenced by environmental conditions. The findings are expected to stimulate fundamental investigations into the photothermal response of MXenes and open exciting prospects for their use in printed and wearable optoelectronics, including memory devices and neuromorphic computing.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"299 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exotic Photothermal Response in Ti-Based MXene Optoelectronic Devices\",\"authors\":\"Stefano Ippolito, Francesca Urban, Paolo Samorì, Jonathan E. Spanier, Yury Gogotsi\",\"doi\":\"10.1002/aelm.202500017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MXenes represent one-of-a-kind materials to devise radically novel technologies and achieve breakthroughs in optoelectronics. To exploit their full potential, precise control over the influence of stoichiometry on optical and thermal properties, as well as device performance, must be achieved. Here, the characteristics of optoelectronic devices based on Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> and Ti<sub>2</sub>CT<i><sub>x</sub></i> thin films are uncovered, highlighting the striking difference in their photothermal responses to laser irradiation under different experimental conditions. Even though their absorption coefficients at 450 nm are comparable, the thermal excitation and relaxation phenomena display markedly different kinetics: Ti<sub>2</sub>CT<i><sub>x</sub></i> devices show a strong asymmetry during the heating-cooling cycle, with the heat dissipation kinetics being three orders of magnitude slower than Ti<sub>3</sub>C<sub>2</sub>T<i><sub>x</sub></i> and strongly influenced by environmental conditions. The findings are expected to stimulate fundamental investigations into the photothermal response of MXenes and open exciting prospects for their use in printed and wearable optoelectronics, including memory devices and neuromorphic computing.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"299 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202500017\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202500017","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Exotic Photothermal Response in Ti-Based MXene Optoelectronic Devices
MXenes represent one-of-a-kind materials to devise radically novel technologies and achieve breakthroughs in optoelectronics. To exploit their full potential, precise control over the influence of stoichiometry on optical and thermal properties, as well as device performance, must be achieved. Here, the characteristics of optoelectronic devices based on Ti3C2Tx and Ti2CTx thin films are uncovered, highlighting the striking difference in their photothermal responses to laser irradiation under different experimental conditions. Even though their absorption coefficients at 450 nm are comparable, the thermal excitation and relaxation phenomena display markedly different kinetics: Ti2CTx devices show a strong asymmetry during the heating-cooling cycle, with the heat dissipation kinetics being three orders of magnitude slower than Ti3C2Tx and strongly influenced by environmental conditions. The findings are expected to stimulate fundamental investigations into the photothermal response of MXenes and open exciting prospects for their use in printed and wearable optoelectronics, including memory devices and neuromorphic computing.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.