{"title":"爆炸脉冲功率驱动真空管","authors":"A. Gurinovich","doi":"10.1109/TPS.2025.3553744","DOIUrl":null,"url":null,"abstract":"Development of high-power pulsed radiation sources in any frequency range requires both generation of high power to drive the source and increasing the efficiency of supplied power to radiated electromagnetic field conversion. The former implies the generation of high power (that is equal to high voltage and high current) pulses. The latter means the use of an electron beam moving in a vacuum to produce the intense radiation: high-electron beam current or high-current density combined with a large cross section of interaction area are required. Explosive pulsed power could contribute to both of the above being capable to store and deliver much higher specific energy as compared with either dielectrics or magnetics and providing high flexibility for matching with a load by the use of a pulse-forming network. Piecemeal matching of explosively driven power supply with the high-power microwave (HPM) producing load (vacuum tube) is described.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"579-585"},"PeriodicalIF":1.3000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explosive Pulsed Power to Drive a Vacuum Tube\",\"authors\":\"A. Gurinovich\",\"doi\":\"10.1109/TPS.2025.3553744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of high-power pulsed radiation sources in any frequency range requires both generation of high power to drive the source and increasing the efficiency of supplied power to radiated electromagnetic field conversion. The former implies the generation of high power (that is equal to high voltage and high current) pulses. The latter means the use of an electron beam moving in a vacuum to produce the intense radiation: high-electron beam current or high-current density combined with a large cross section of interaction area are required. Explosive pulsed power could contribute to both of the above being capable to store and deliver much higher specific energy as compared with either dielectrics or magnetics and providing high flexibility for matching with a load by the use of a pulse-forming network. Piecemeal matching of explosively driven power supply with the high-power microwave (HPM) producing load (vacuum tube) is described.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 4\",\"pages\":\"579-585\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10949283/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10949283/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Development of high-power pulsed radiation sources in any frequency range requires both generation of high power to drive the source and increasing the efficiency of supplied power to radiated electromagnetic field conversion. The former implies the generation of high power (that is equal to high voltage and high current) pulses. The latter means the use of an electron beam moving in a vacuum to produce the intense radiation: high-electron beam current or high-current density combined with a large cross section of interaction area are required. Explosive pulsed power could contribute to both of the above being capable to store and deliver much higher specific energy as compared with either dielectrics or magnetics and providing high flexibility for matching with a load by the use of a pulse-forming network. Piecemeal matching of explosively driven power supply with the high-power microwave (HPM) producing load (vacuum tube) is described.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.