基于MEMS技术的0.65 THz高频电路分析

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Yuxin Wang;Yinyu Zhang;Yuan Zheng;Jie Wu;Ke Yan;Yang Yang;Yubin Gong
{"title":"基于MEMS技术的0.65 THz高频电路分析","authors":"Yuxin Wang;Yinyu Zhang;Yuan Zheng;Jie Wu;Ke Yan;Yang Yang;Yubin Gong","doi":"10.1109/TPS.2025.3549598","DOIUrl":null,"url":null,"abstract":"The terahertz (THz) traveling wave tube (TWT) is characterized by low interaction efficiency and insufficient output power. Higher power can be obtained by minimizing insertion loss through advanced processing techniques. The 0.65 THz high-frequency circuits, composed of serpentine waveguide (SWG) slow wave structure (SWS), were designed, fabricated, cold tested, and analyzed in this article. The high-frequency characteristics of the process-adapted SWSs, applicable to both the high-precision computer numerical control (CNC) and deep reactive-ion etching (DRIE) technologies, are analyzed and compared. Then, two high-frequency circuits for high power 0.65 THz TWT are fabricated by those micro-electro-mechanical system (MEMS) technologies. The circuits fabricated by CNC and DRIE techniques exhibit superior equivalent conductivity of <inline-formula> <tex-math>$2.4\\times 10^{7}$ </tex-math></inline-formula> S/m in cold test. Benefiting from the high precision bonding and DRIE technology feature, the circuit can eliminate the <inline-formula> <tex-math>$3\\pi $ </tex-math></inline-formula>/2 point cave in the <inline-formula> <tex-math>${S} _{21}$ </tex-math></inline-formula> curve. The particle-in-cell (PIC) simulation results of the 3-D models, reconstructed based on the cold test data, predict that low-loss high-frequency circuits manufactured by advanced manufacturing technologies can achieve 25% output power improvement. Employing the DRIE process, it is possible to not only reduce manufacturing costs and shorten the manufacturing cycle, enabling mass production, but also effectively mitigate <inline-formula> <tex-math>$3\\pi $ </tex-math></inline-formula>/2 point oscillation, enhancing the stability of the device.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 4","pages":"842-847"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the 0.65 THz High-Frequency Circuits Fabricated by MEMS Technologies\",\"authors\":\"Yuxin Wang;Yinyu Zhang;Yuan Zheng;Jie Wu;Ke Yan;Yang Yang;Yubin Gong\",\"doi\":\"10.1109/TPS.2025.3549598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The terahertz (THz) traveling wave tube (TWT) is characterized by low interaction efficiency and insufficient output power. Higher power can be obtained by minimizing insertion loss through advanced processing techniques. The 0.65 THz high-frequency circuits, composed of serpentine waveguide (SWG) slow wave structure (SWS), were designed, fabricated, cold tested, and analyzed in this article. The high-frequency characteristics of the process-adapted SWSs, applicable to both the high-precision computer numerical control (CNC) and deep reactive-ion etching (DRIE) technologies, are analyzed and compared. Then, two high-frequency circuits for high power 0.65 THz TWT are fabricated by those micro-electro-mechanical system (MEMS) technologies. The circuits fabricated by CNC and DRIE techniques exhibit superior equivalent conductivity of <inline-formula> <tex-math>$2.4\\\\times 10^{7}$ </tex-math></inline-formula> S/m in cold test. Benefiting from the high precision bonding and DRIE technology feature, the circuit can eliminate the <inline-formula> <tex-math>$3\\\\pi $ </tex-math></inline-formula>/2 point cave in the <inline-formula> <tex-math>${S} _{21}$ </tex-math></inline-formula> curve. The particle-in-cell (PIC) simulation results of the 3-D models, reconstructed based on the cold test data, predict that low-loss high-frequency circuits manufactured by advanced manufacturing technologies can achieve 25% output power improvement. Employing the DRIE process, it is possible to not only reduce manufacturing costs and shorten the manufacturing cycle, enabling mass production, but also effectively mitigate <inline-formula> <tex-math>$3\\\\pi $ </tex-math></inline-formula>/2 point oscillation, enhancing the stability of the device.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"53 4\",\"pages\":\"842-847\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937297/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10937297/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

太赫兹行波管具有相互作用效率低、输出功率不足的特点。通过先进的加工技术,最大限度地减少插入损耗,可以获得更高的功率。本文对蛇形波导慢波结构(SWS)组成的0.65 THz高频电路进行了设计、制作、冷测试和分析。分析和比较了适用于高精度计算机数控(CNC)和深度反应离子蚀刻(DRIE)技术的工艺适应性SWSs的高频特性。然后,利用微机电系统(MEMS)技术制备了两个高功率0.65 THz行波管高频电路。采用CNC和DRIE技术制造的电路在冷测试中表现出优越的等效电导率,为2.4\ × 10^{7}$ S/m。得益于高精度键合和DRIE技术的特点,该电路可以消除${S} _{21}$曲线中的$3\pi $ /2点凹陷。基于冷试验数据重建的三维模型的PIC仿真结果预测,采用先进制造技术制造的低损耗高频电路可将输出功率提高25%。采用DRIE工艺,不仅可以降低制造成本,缩短制造周期,实现批量生产,还可以有效减轻$3\pi $ /2点振荡,增强器件的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the 0.65 THz High-Frequency Circuits Fabricated by MEMS Technologies
The terahertz (THz) traveling wave tube (TWT) is characterized by low interaction efficiency and insufficient output power. Higher power can be obtained by minimizing insertion loss through advanced processing techniques. The 0.65 THz high-frequency circuits, composed of serpentine waveguide (SWG) slow wave structure (SWS), were designed, fabricated, cold tested, and analyzed in this article. The high-frequency characteristics of the process-adapted SWSs, applicable to both the high-precision computer numerical control (CNC) and deep reactive-ion etching (DRIE) technologies, are analyzed and compared. Then, two high-frequency circuits for high power 0.65 THz TWT are fabricated by those micro-electro-mechanical system (MEMS) technologies. The circuits fabricated by CNC and DRIE techniques exhibit superior equivalent conductivity of $2.4\times 10^{7}$ S/m in cold test. Benefiting from the high precision bonding and DRIE technology feature, the circuit can eliminate the $3\pi $ /2 point cave in the ${S} _{21}$ curve. The particle-in-cell (PIC) simulation results of the 3-D models, reconstructed based on the cold test data, predict that low-loss high-frequency circuits manufactured by advanced manufacturing technologies can achieve 25% output power improvement. Employing the DRIE process, it is possible to not only reduce manufacturing costs and shorten the manufacturing cycle, enabling mass production, but also effectively mitigate $3\pi $ /2 point oscillation, enhancing the stability of the device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信