Yao-Yu Chen, Na An, Yan-Zhen Wang, Peng-Cheng Mei, Jun-Di Hao, Song-Mei Liu, Quan-Fei Zhu* and Yu-Qi Feng*,
{"title":"HeuSMA:改进非靶向代谢组学峰识别的多梯度 LC-MS 策略","authors":"Yao-Yu Chen, Na An, Yan-Zhen Wang, Peng-Cheng Mei, Jun-Di Hao, Song-Mei Liu, Quan-Fei Zhu* and Yu-Qi Feng*, ","doi":"10.1021/acs.analchem.4c0531510.1021/acs.analchem.4c05315","DOIUrl":null,"url":null,"abstract":"<p >Metabolomics, which involves the comprehensive analysis of small molecules within biological systems, plays a crucial role in elucidating the biochemical underpinnings of physiological processes and disease conditions. However, current coverage of the metabolome remains limited. In this study, we present a heuristic strategy for untargeted metabolomics analysis (HeuSMA) based on multiple chromatographic gradients to enhance the metabolome coverage in untargeted metabolomics. This strategy involves performing LC-MS analysis under multiple gradient conditions on a given sample (e.g., a pooled sample or a quality control sample) to obtain a comprehensive metabolomics data set, followed by constructing a heuristic peak list using a retention index system. Guided by this list, heuristic peak picking in quantitative metabolomics data is achieved. The benchmarking and validation results demonstrate that HeuSMA outperforms existing tools (such as MS-DIAL and MZmine) in terms of metabolite coverage and peak identification accuracy. Additionally, HeuSMA improves the accessibility of MS/MS data, thereby facilitating the metabolite annotation. The effectiveness of the HeuSMA strategy was further demonstrated through its application in serum metabolomics analysis of human hepatocellular carcinoma (HCC). To facilitate the adoption of the HeuSMA strategy, we also developed two user-friendly graphical interface software solutions (HPLG and HP), which automate the analysis process, enabling researchers to efficiently manage data and derive meaningful conclusions (https://github.com/Lacterd/HeuSMA).</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 14","pages":"7719–7728 7719–7728"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HeuSMA: A Multigradient LC-MS Strategy for Improving Peak Identification in Untargeted Metabolomics\",\"authors\":\"Yao-Yu Chen, Na An, Yan-Zhen Wang, Peng-Cheng Mei, Jun-Di Hao, Song-Mei Liu, Quan-Fei Zhu* and Yu-Qi Feng*, \",\"doi\":\"10.1021/acs.analchem.4c0531510.1021/acs.analchem.4c05315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Metabolomics, which involves the comprehensive analysis of small molecules within biological systems, plays a crucial role in elucidating the biochemical underpinnings of physiological processes and disease conditions. However, current coverage of the metabolome remains limited. In this study, we present a heuristic strategy for untargeted metabolomics analysis (HeuSMA) based on multiple chromatographic gradients to enhance the metabolome coverage in untargeted metabolomics. This strategy involves performing LC-MS analysis under multiple gradient conditions on a given sample (e.g., a pooled sample or a quality control sample) to obtain a comprehensive metabolomics data set, followed by constructing a heuristic peak list using a retention index system. Guided by this list, heuristic peak picking in quantitative metabolomics data is achieved. The benchmarking and validation results demonstrate that HeuSMA outperforms existing tools (such as MS-DIAL and MZmine) in terms of metabolite coverage and peak identification accuracy. Additionally, HeuSMA improves the accessibility of MS/MS data, thereby facilitating the metabolite annotation. The effectiveness of the HeuSMA strategy was further demonstrated through its application in serum metabolomics analysis of human hepatocellular carcinoma (HCC). To facilitate the adoption of the HeuSMA strategy, we also developed two user-friendly graphical interface software solutions (HPLG and HP), which automate the analysis process, enabling researchers to efficiently manage data and derive meaningful conclusions (https://github.com/Lacterd/HeuSMA).</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 14\",\"pages\":\"7719–7728 7719–7728\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c05315\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c05315","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
HeuSMA: A Multigradient LC-MS Strategy for Improving Peak Identification in Untargeted Metabolomics
Metabolomics, which involves the comprehensive analysis of small molecules within biological systems, plays a crucial role in elucidating the biochemical underpinnings of physiological processes and disease conditions. However, current coverage of the metabolome remains limited. In this study, we present a heuristic strategy for untargeted metabolomics analysis (HeuSMA) based on multiple chromatographic gradients to enhance the metabolome coverage in untargeted metabolomics. This strategy involves performing LC-MS analysis under multiple gradient conditions on a given sample (e.g., a pooled sample or a quality control sample) to obtain a comprehensive metabolomics data set, followed by constructing a heuristic peak list using a retention index system. Guided by this list, heuristic peak picking in quantitative metabolomics data is achieved. The benchmarking and validation results demonstrate that HeuSMA outperforms existing tools (such as MS-DIAL and MZmine) in terms of metabolite coverage and peak identification accuracy. Additionally, HeuSMA improves the accessibility of MS/MS data, thereby facilitating the metabolite annotation. The effectiveness of the HeuSMA strategy was further demonstrated through its application in serum metabolomics analysis of human hepatocellular carcinoma (HCC). To facilitate the adoption of the HeuSMA strategy, we also developed two user-friendly graphical interface software solutions (HPLG and HP), which automate the analysis process, enabling researchers to efficiently manage data and derive meaningful conclusions (https://github.com/Lacterd/HeuSMA).
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.